
Topic 7

Interfaces

I once attended a Java user group meeting where James Gosling (one

of Java's creators) was the featured speaker. During the memorable

Q&A session, someone asked him: "If you could do Java over again,

what would you change?" "I'd leave out classes," he replied. After

the laughter died down, he explained that the real problem wasn't

classes per se, but rather implementation inheritance (the extends

relationship). Interface inheritance (the implements relationship)

is preferable.

- Allen Holub

Clicker 1
How many sorts do you want to have to write?

CS314 Interfaces

public static void selSort(double[] data) {

for (int i = 0; i < data.length; i++) {

int small = i;

for(int j = i + 1; j < data.length; j++) {

if (data[j] < data[small])

small = j;

}

double temp = data[i];

data[i] = data[small];

data[small] = temp;

}

}

A. 0

B. 1

C. 2

D. 3

E. >= 4

CS314 Interfaces 3

Why interfaces?
Interfaces allow the creation of abstract types

– "A set of data values and associated operations that are

precisely specified independent of any particular

implementation. "

– multiple implementations allowed

Interfaces allow a data type to be specified without

worrying about the implementation

– do design first

– What will this data type do?

– Don’t worry about implementation until design is done.

– separation of concerns.

– allow us to create generic algorithms

Interfaces
public interface List<E> {

No constructors

No instance variables

abstract instance methods
public void add(E val);

default instance methods

static methods

class constants (prefer enums)
public static final int DEFAULT_CAP = 10;

an interface can (but does not have to)

extends other interfaces

CS314 Interfaces 5

Implementing Interfaces
In Java, a class inherits (extends) exactly

one other class, but …

A class can implement as many interfaces as it likes

public class ArrayList implements List,

Serializable

A class that implements an interface must

provide implementations of all non default

method declared in the interface

or the class must be abstract

interfaces can extend other interfaces

– multiple in fact, unlike Java classes

CS314 Interfaces 6

The Comparable Interface
The Java Standard Library

contains a number of interfaces

– names are italicized in the

class listing

One of the most important

interfaces is the Comparable

interface

CS314 Interfaces 7

Comparable Interface

compareTo must return

– an int <0 if the calling object is less than the parameter,

– 0 if they are equal

– an int >0 if the calling object is greater than the

parameter other

compareTo should be consistent with equals

but this isn't required.

package java.lang;

public interface Comparable<T> {

public int compareTo(T other);

}

Interfaces
"Use interfaces to ensure a class has

methods that other classes or methods will

use." (In other words, clients of your class.)

– Anthony, Spring 2013

The other classes or methods may already be

written.

The other methods or classes use interface

type for the parameters of methods.

POLYMORPHISM

– old code using new code

CS314 Interfaces 8

Clicker Question 2
What is output by the following code?
Comparable c1 = new Comparable();

Comparable c2 = new Comparable();

System.out.println(c1.compareTo(c2));

A. A value < 0

B. 0

C. A value > 0

D. Unknown until program run

E. Compile error

CS314 Interfaces 9

CS314 Interfaces 10

Example compareTo

Suppose we have a class to

model playing cards

– Ace of Spades, King of Hearts,

Two of Clubs

each card has a suit and a

value, represented by ints

this version of compareTo will

compare values first and then

break ties with suits

CS314 Interfaces 11

compareTo in a Card class

public class Card implements Comparable<Card> {

public int compareTo(Card otherCard) {

return this.rank - other.rank;

}

// other methods not shown

}

Assume ints for ranks (2, 3, 4, 5, 6,...) and suits (0 is

clubs, 1 is diamonds, 2 is hearts, 3 is spades).

CS314 Interfaces 12

Interfaces and Polymorphism

Interfaces may be used as the data type

for object variables

Can’t simply create objects of that type

Can refer to any objects that implement the

interface or descendants

Assume Card implements Comparable

Card c = new Card();

Comparable comp1 = new Card();

Comparable comp2 = c;

Clicker Question 3
Which of the following lines of code causes a

syntax error?

Comparable c1; // A

c1 = "Ann"; // B

Comparable c2 = "Kelly"; // C

int x = c2.compareTo(c1); // D

// E No syntax errors.

// what is x after statement?

CS314 Interfaces 13

Why Make More Work?
Why bother implementing an interface such

as Comparable
– objects can use method that expect an interface type

Example if I implement Comparable:

Arrays.sort(Object[] a)

public static void sort(Object[] a)

All elements in the array must implement the

Comparable interface. Furthermore, all elements in

the array must be mutually comparable

objects of my type can be stored in data

structures that accept Comparables
CS314 Interfaces 14

CS314 Interfaces 15

A List Interface
What if we wanted to specify the operations

for a List, but no implementation?

Allow for multiple, different implementations.

Provides a way of creating abstractions.

– a central idea of computer science and

programming.

– specify "what" without specifying "how"

– "Abstraction is a mechanism and practice to

reduce and factor out details so that one can

focus on a few concepts at a time. "

CS314 Interfaces 16

List Interface
public interface List <E> {

public void add(E val);

public int size();

public E get(int location);

public void insert(int location, E val);

public E remove(int location);

}

One Sort

CS314 Interfaces 17

public static void sort(Comparable[] data) {

final int LIMIT = data.length – 1;

for(int i = 0; i < LIMIT; i++) {

int small = i;

for(int j = i + 1; j < data.length; j++) {

int d = data[j].compareTo(data[small]);

if (d < 0)

small = j;

}

Comparable temp = data[i];

data[i] = data[small];

data[small] = temp;

} // end of i loop

}

