CS324e - Elements of Graphics
and Visualization

Timing Framework

Animating Swing Based Programs

* From FRC

e goal: provide framework and library to
allow animation of components in a GUI

» Set of utility classes that contain the code
common to handling timing issues for
animation

 more functionality than the
javax.swing.timer class

Example - Fading Button

e When button

| % Fading Button TF o || =] 28

clicked it fades out o

Start Animation

and then back in

e fading cycle
repeats until the
button is pressed
again

Fading Button Classes

* JFrame to hold panel and button

e checkerboard is a JPanel
e Button is a FadingButtonTF

—class extends the JButton class

—implements ActionListener (instead of using
an anonymous inner class) and
TimingTarget interfaces

FRC Timing Framework

 Handle common tasks such as
determining what fraction of the
animation has been completed

* Provide a simple API (Application
Programming Interface)

—a way of using existing code in a simple way
—We have been using the Java API

Core Concepts of FRC Timing Framework

* handles timing, but alteration left to the
orogrammer

e Animator

—class that contains most of the timing
functionality

 callbacks (listeners)

—similar to timer callbacks but with more
types of callbacks and more information

Core Concepts

* Duration: length of time animation runs,
or can be set to indefinite (a clock for a
game)

* Repetition: timer can run once and stop
or repeat over and over

* Resolution: frame rate or frames per
second

—how often does timer send out notifications
—default is 20 fps

Core Concepts

e Starting and Ending behaviors:

—may add delay to start or begin in the
middle of a repetition

* |Interpolation
—default is linear interpolation

—fractions based on
elapsed time / total time

—possible to have other kinds of interpolation
—start and end slowly (ease in and out)

Example Program

 Class declaration and instance variables

public class FadingButtonTF extends JButton
implements ActionListener, TimingTarget {

// current opacity of button
float alpha = 1.0f;

// for start/stop actions
Animator animator;

// each cycle will take 2 seconds
int animationDuration = 2000;
BufferedImage buttonImage = null;

Example Program

e Constructor with creation of Animator

/** Creates a new 1instance of FadingButtonTF */
public FadingButtonTF (String label) {
super (label);
setOpaque (false) ;
setPreferredSize (new Dimension (150, 50));
animator = new Animator (
animationDuration/2,
Animator.INFINITE,
RepeatBehavior.REVERSE,
this) ;
animator.setStartFraction(1.0f);
animator.setStartDirection (Direction.BACKWARD) ;
addActionListener (this) ;

Animator Properties

Animator

public Animator(int duration,
double repeatCount,
Animator.RepeatBehavior repeatBehavior,
TimingTarget target)

Constructor that sets the most common properties of a repeating animation.

e duration in milliseconds

—can set to Animator.INFINITE to run continuously

* repeatCount

—number of times to run, can also be INFINITE
* repeatBehavior: LOOP or REVERSE
 target: listener for timer notifications y

Loop vs. Reverse

LOOP

fraction

from

Animator

time
REVERSE

fraction

from

Animator

time 12

Animator Properties

animator.setStartFraction(1.0f);
animator.setStartDirection (Direction.BACKWARD) ;

REVERSE

fraction
from
Animator

time

13

Controlling the Animator

methods for Animator Object

void start()
— callbacks to start and timingEvent methods

void stop()
— callback to end method

void cancel()
— stops Animator, but no callbacks

void pause()
void resume()
boolean isRunning()

14

Fading Button Demo

Respond to button clicks
recall the FadingButtonTF class

implements the ActionListener interface

/'k'k
* This method receives click events,
* hhich start and stop the animation
F
public void actionPerformed (ActionEvent ae) {

if (!animator.isRunning()) 1$-______..-...~
this.setText ("Stop Animation");
animator.start () ; 45—-—-——-——-——-—-—-_.

} else {

this.setText ("Start Animation");
// reset alpha to opaque
alpha = 1.0f;

15

Responding to Notifications

* To respond to notifications from the
animator create a class that implements
the timing

public class FadingButtonTF extends JButton

implements ActionListener,CTimingTarget

/')r'.k
* TimingTarget implementation: this method
* sets the alpha of our button equal to
* the current elapsed fraction of the animation.
=
public void timingEvent (float fraction) {
alpha = fraction;
// redisplay our the button
repaint () ;

Alteration of Button

public void paintComponent (Graphics g) ({

// Create an image for the button graphics if necessary

if (buttonImage == null || buttonImage.getWidth() != getWidth() ||
buttonImage.getHeight () !'= getHeight()) {

buttonImage = getGraphicsConfiguration() .

createCompatibleImage (getWidth (), getHeight()):

}

Graphics gButton = buttonImage.getGraphics();

gButton.setClip(g.getClip())

// Have the superclass render the button for us
super.paintComponent (gButton) ;

// Make the graphics object sent to this paint() method translucent

Graphics2D g2 = (Graphics2D)g;

AlphaComposite newComposite =
AlphaComposite.getInstance(AlphaComposite.SRC OVER, alpha);

g2.setComposite (newComposite) ;

// Copy the button's image to the destination graphics
g2.drawImage (buttonImage, 0, 0, null);

Non Linear Interpolation

 Animator objects have acceleration and
deceleration properties

* by default these are not used

e can set so animation eases in and / or
out

* instead of fraction of animation being
linear with respect to time elapsed

18

Set Acceleration and Deceleration

* represented as fraction of animation to
accelerate to average speed and
decelerate to stop

e sum of fractions must be <=1

// sample to show ease 1n and out
animator.setAcceleration(.2f);
animator.setDeceleration(.4f) ;

19

Linear

e Horizontal axis is time

e Vertical axis is fraction

1.20

1.00

0.80

0.60

0.40

0.20

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

20

Acceleration and Deceleration
e 3 of duration for acceleration

e 3 of duration for Deceleration

120 O T

1.00

0.80

0.60 [}

0.40

0.20

0.00 C

* note, at 1 second (1/4 of time) fraction is
still below 0.2 .

Acceleration and Deceleration

e .7 of duration for acceleration

e 2 of duration for Deceleration

22

1.20

1.00

0.80

0.60

0.40

0.20

0.00

- LE'E
- S8'E
CELE
E 19'E
- 6Y'E
- LE'E
F ST'E
- ET'E
- T0°E
S 06'Z
£8L'T
F 99'C
E ST
X444
- 0£'Z
F8T'Z
£ 902
-6l
-28'T
C0LT
-8S'T
- 9v'T
CvE'T
XL
SOT'T
- 660
c £8'0
-SL'0
- €90
- 150
- 6€£°0
- £2°0
£ ST'0
£ €£0'0

Triggers

* Part of FRC Timing Framework

e Start animation based on a specified
event

—for example:
—user presses a button
—user clicks on a door in a game

—car in a game goes off the track in a game

23

Triggers

* Respond to
— GUI events
—time events

—custom events created by the programmer

* Use triggers by:

— create trigger including information about
the Animator the trigger will run

—add listeners to respond to trigger when it
goes off

24

Triggers in Action

* Firing: when trigger event occurs the
Animator objects start

* Disarming: canceling a trigger

e Auto-reverse: trigger has ability to run
Animator forwards and then backwards

— like the button fading in and out

25

Trigger Classes

* Trigger: base case for more complicated
triggers

* TriggerEvent: part of framework to make
it easy to add different kinds of Triggers

* ActionTrigger: simplest kind of Trigger

—responds to java.awt.event.ActionEvent
(like button clicks)

26

Trigger Demo

|| Triggers E=H fol ™7

* Spheres fall and bounce

Trigger

based on various triggers 00060

* The spheres are in their
own panels, placed side
by side

@Override

// SpherePanel paintComponent method
protected void paintComponent (Graphics g) {
.setColor (Color.white);

.fillRect (0, 0, getWidth(), getHeight()):;
.setColor (Color.BLACK) ;

.drawRect (0, 0, getWidth(), getHeight());
.drawImage (sphereImage, sphereX, sphereY, null);

QQQ QW

27

Trigger Types

* Program demos 5 different kinds of
triggers

* Yellow Sphere - ActionTrigger

 when the Trigger button is clicked the
vellow ball's animation runs

* restarts if button clicked again before
animation complete

Actionifigger.addTrigger(triggerButton, action.getAnimator())

e action is the SpherePanel for the Yellow
sphere

28

Animator for SpherePanel

 The FRC timing framework includes a
class to automate alteration aspect of
animations

— PropertySetter
* From SpherePanel
* Creates animator

bouncer = PropertySetter.createAnimator (2000, this, "sphereY'

0, (PANEL HEIGHT - sphereImage.getHeight()), 0);
bouncer.setAcceleration(.5f);
bouncer.setDeceleration(.5f);

T
I

29

More on PropertySetter

* Note the PropertySetter.createAnimator
method

bouncer = PropertySetter.createAnimator (2000,
this,
"sphereY",
0,
(PANEL HEIGHT - sphereImage.getHeight ()),
0);

e duration, object that has property
animated, name of property (must have
set... method), values property takes
(y coordinate -> top, bottom, top)

30

Focus Trigger

* Blue Sphere - A FocusTrigger

FocusTrigger.addTrigger(triggerButton,
focus.getAnimator (), FocusTriggerEvent. IN);

 When the Trigger Button gains the focus
(not pressed) the Blue Sphere bounces

 demo: use tab to change focus between
Trigger button and Other Button

31

MouseTriggers

 Two MouseTriggers in the demo
 Red Sphere - armed trigger

MouseTrigger.addTrigger (triggerButton,
armed.getAnimator (), MouseTriggerEvent.PRESS) ;

* When the mouse is pressed on the button
the red sphere bounces

* press and hold button
e change from triggerButton to action panel

32

MouseTrigger

* Green Sphere - MouseTrigger

e Activated when the mouse enters the
Trigger button region

—does not need to be pressed

MouseTrigger.addTrigger (triggerButton,
over.getAnimator (), MouseTriggerEvent.ENTER) ;

33

Timing Trigger

* Gray Sphere - TimingTrigger

 When the action trigger (yellow sphere)
stops then the timing trigger for the silver
sphere starts

* useful for chaining animations

TimingTrigger.addTrigger (action.getAnimator (),
timing.getAnimator (), TimingTriggerEvent.STOP);

e Add triggers so when gray sphere stops,
red, green, and blue bounce

34

