CS324e - Elements of Graphics
and Visualization

Checkerboard World

Larger Example - From KGPJ

|| Checkers3D o| @ || =2

Classes (Not All)
Checkers3D
extends JFrame

WrapCheckers3D
extends JPanel

’0
*
*
>

coloredTiles
CheckerFloor
Extends Shape3D

Checkers3D

Extends JFrame
Similar to frame from HelloUniverse

Contains the panel that contains the
canvas3D

Could add other GUI components

—controls or menu items to affect the 3d
scene

WrapCheckers3D

extends JPanel
Contains the Canvas3D
Canvas3D a GUl component

Canvas3D show up on top of other swing
components if you try and mix them
—doesn't play well

— keep separate

—don't try to put buttons or scroll bars in canvas

No animation loop

— Canvas3D and Scene graph self monitor and if
something changes redraw automatically

WrapCheckers3D

 Most of the code to set up the 3D world

* |[nstance variables and class constants

private
private
private
private

static
static
static
static

final
final
final
final

// 1nstance vars
private SimpleUniverse su;
private BranchGroup sceneBG;
private BoundingSphere bounds;

int PWIDTH = 800;

int PHEIGHT = 600; |

int BOUNDSIZE = 100;

Point3d USERPOSN = new Point3d (0,5, 20);

e Where is USERPOSN located?

Creating the World

public WrapCheckers3D() {

setLayout (new BorderLayout()):
setPreferredSize (new Dimension (PWIDTH, PHEIGHT)) :;

GraphicsConfiguration config =
SimpleUniverse.getPreferredConfiquration() ;

Canvas3D canvas3D = new Canvas3D(confiq);

add (canvas3D) ;

canvas3D.setFocusable (true) ;

su = new SimpleUniverse (canvas3D);
createSceneGraph() ;
initUserPosition () ;

orbitControls (canvas3D) ;

su.addBranchGraph (sceneBG) ;

Creating the Scene Graph

private void createSceneGraph () {

sceneBG = new BranchGroup () ;
bounds = new BoundingSphere (new Point3d(0,0,0), BOUNDSIZE) ;

lightScene () ;
addBackground () ;

sceneBG.addChild (new CheckerFloor () .getBG()):;
floatingSpheres () ;

sceneBG.compile () ;

Lighting the Scene

* four kinds of lights can be placed in a Java3D
world

—ambient light
—directional lights
— point lights
—spot lights
e Scene can have multiple lights
* Lights have color, position (possibly),

direction (possibly), attenuation (possibly)
attributes

Lights
 Ambient lights

— Uniform in all directions and locations

AN

— create AmbientLight object, give it a color, and
add as a node to scene graph

— Color3f each channel (red, green, blue defined
with value between 0 and 1

Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
AmbientLight ambientLightNode = new AmbientLight (white);
ambientLightNode.setInfluencingBounds (bounds) ;
sceneBG.addChild (ambientLightNode) ;

Spheres and Ambient Light

|| Checkers3D (o] @ (=)

Directional Lights

e fixed direction

* no specific location (think of it as being at
an infinite distance away from scene)

* light rays are parallel

=

12

Dlrectlonal Light

// pointing left, 1, 1nto scene
Vector3f llghtlDlrectlon
= new Vector3f(-1.0f, -1.0f, -1.0f);

Color3f yellow = new Color3f(l, 1, 0);
DirectionalLight 1lightl =

new DirectionalLight(yellow, lightlDirection);

lightl.setInfluencingBounds (bounds) ;
sceneBG.addChild (1lightl) ;

13

Directional Light

// point right, down, out of scene
Vector3f light2Direction
= new Vector3f(1.0f, -1.0f, 1.0f);

Color3f magenta = new Color3f(l, 0, 1);
DirectionalLight light2 =
new DirectionallLight (magenta, light2Direction);

light2.setInfluencingBounds (bounds) ;
sceneBG.addChild (1light2);

Point Light

Has a location in the scene
emits in all directions

nas a color

nas an attenuation, intensity decreases
as distance from light increases

15

Point Light

* Attenuation of Point Light has three
factors:

—constant attenuation, ac
—linear attenuation, la
—quadratic attenuation, ga
* light intensity at a given point distance d

away from the light =
1.0/(ac+la*d+qga*d*d)

16

Point Light

// sample code for point lights and spot lights

Color3f cyan = new Color3f(0, 1, 1);

Point3f higher = new Point3f (1, 10, -1);

Point3f attenuation = new Point3f (1, .05f, .001f);

PointLight highLight = new PointLight (cyan, higher, attenuation);
highLight.setInfluencingBounds (bounds) ;

sceneBG.addChild (highLight) ;

Point Light

 Change y coordinate of location from 10
to 20

' %) Checkers3D o @ =

* We see the things the light interacts with

18

Spotlight
Similar to Point Light

has location and direction, but does not
emit light in all directions

emits light in a cone shape region

attenuation like Point Light, but add
attenuation for light rays away
from central direction

19

Spotlight

Point3f attenuation = new Point3f (1, .005f, .0001f);
Point3f pos = new Point3f (0, 10, 5);
Vector3f direction = new Vector3f(0, -.5f, -1);
SpotLight spot = new SpotLight (white, pos,
attenuation, direction, (float) (Math.PI * .1), 100);

// Last two parameters are spread angle and

// concentration of light.

// Spread angle between 0 and PI / 2 (90 degrees).
// Any spread angle over PI / 2 set to PI / 2.

// Light concentration varies between 0 and 128.
// 0 1s uniform concentration

// across spread, 128 is max concentration

// 1n center

spot.setInfluencingBounds (bounds) ;
sceneBG.addChild (spot) ;

20

Spotlight Effects

* attenuation changed to Pl /2

=N cH ™%

21

Spotlight Effects

e Concentration changed from 100 to 10,
spread angle still set at Pl / 2

%, Checkers3D =8~

22

Background

e can add a background image or color

e draw at the back of a scene and is not
altered by camera movement in the
scene

23

e

s T Bag e Na

Background Code

private void addBackground() {

Background back = new Background() ;
back.setApplicationBounds (bounds) ;
back.setColor(0.17£, 0.65f, 0.92f);
sceneBG.addChild (back) ;

// sample code to load image as background

try{
BufferedImage bi

// = ImageIlO.read(new File ("mountains.jpg")):;
ImageComponent2D 1ic
// = new ImageComponent2D(bi.getType(), bi);

back.setImage (ic);

}

catch (Exception e) {
System.out.println("Failed to load image");

}

24

Background Effect - Color

 ambient and directional lights

61 Neckel)

Background Effect - Image

L
| £ Checkers3D

26

Adding Shapes

 Documentation for Java3D package at
http://download.java.net/media/java3d/j
avadoc/1.5.1/index.html

e Add visible objects to a scene requires
adding Primitives or creating a class that
extends Shape3D

* built in subclasses of primitive include:

—box, cone, cylinder, sphere

27

Adding Spheres

 Multiple Sphere constructors but all have
some variation of these parameters

— radius, size of sphere

— primFlags, A number of constants that affect
how the sphere is created (for example should
the appearance be allowed to be changed)

— divisions, affects the number of polygons used
to construct the sphere (divisions != total
number)

—appearance, how the sphere should look

28

Sphere Constructor

Sphere (float radius, int primflags, int divisions, Appearance ap)
Constructs a customized Sphere of a given radms, number of divisions, and
appearance, with additional parameters specified by the Primitive flags.

* primflags - refer to Sphere class for options,
GENERATE_NORMALS in our case

* radius = 2.0f
e vary divisions from 4 to 31

* Appearance, show wireframe and blue
materials

29

Appearances

* Program includes two hard coded
appearances for the spheres

* First, just show the polygons

// Set up the polygon attributes

PolygonAttributes pa = new PolygonAttributes();
pa.setPolygonMode (PolygonAttributes. POLYGON LINE) ;
Appearance blueApp = new Appearance();
blueApp.setPolygonAttributes (pa);

// pa.setPolygonMode (PolygonAttributes.POLYGON POINT) ;
// pa.setPolygonMode (PolygonAttributes.POLYGON FILL);
// pa.setCullFace (PolygonAttributes.CULL NONE) ;

// The previous section 1s to see the wireframe

30

Wireframes

* By default inside faces are culled, not
visible
* notice difference in divisions

—why not just crank divisions up to 100s?

31

Wireframes

« CULL NONE
 Notice difference in smaller divisions
e we see lines the "backs" of lines

S
G - I F -“);\l'
AN u;_
'; gxmm-;w?{
VRN %

Wireframes

e Using POLYGON_POINT instead of
POLYGON_LINE

G

33

Polygon Attributes

* Using POLYGON_FILL

Changing Color

* Color attribute of an appearance can be
changed, default is white

Appearance blueApp = new Appearance();

ColoringAttributes ca = new ColoringAttributes();
ca.setColor (new Color3f(.9f, .2f, .2f)):;

blueApp.setColoringAttributes (ca);

| Checkers3D

(][@]=]

35

Materials

More realistic appearances created using
materials

Material class

specify four colors and a value for
shininess (1 to 128)

four colors for ambient, emissive, diffuse,
and specular properties of the material

Define how light interacts with the
material and the light it gives off.

36

Material Properties

 Ambient Color: how much (and what

color) ambient light is reflected by the
material

* Recall when only ambient light in the
world

=) Checkers3D -) O e

Material Properties

* Emissive Light
—the color of light the material gives off itself

—material glows, but does not illuminate
other materials

—to create a flashlight pair a spotlight and a
shape with a material that gives off light

—examples so far emissive light for spheres
was black (none)

—dim the lights and let the spheres give off a
bright yellow light

38

Emissive Light

* No other lights

39

Diffuse and Specular Properties

 Ambient color is response to ambient light
which appears to come from all directions

 diffuse color reflects light coming from one
direction (directional, point, and spot lights)
—angle in != angle out
— various angles of reflection

» specular color, follows law of reflection

—angle in = angle out

40

Materials
Billiard Ball like material

ambient emissive diffuse specular shininess
(red, black, red, white, 70)
notice glinting off edges

Materials

e Specular set to black

|| Checkers3D (o] &=

Materials

 ambient emissive diffuse specular shininess
. (red black, white, white, 25)

% i‘ 3D

43

Positioning Spheres

Simple Universe

* To position spheres
each has its own
Transform Group

Branch Group
* changex, vy, and z
for each transform /

Transform
Transform
group Group Group D

e can't just update
Sphere Sphere

one TG, otherwise
position changes

Positioning Spheres

// position the spheres
int vy = 7;
int divisions = 4;
for(int z = -30; z <= 0; z += 10){
y = 2;
for(int x = -18; x <= 18; x += 5){
Transform3D t3d = new Transform3D() ;
t3d.set (new Vector3df(x, vy, 2));
TransformGroup tg = new TransformGroup (t3d):;
tg.addChild (new Sphere (2f, Sphere.GENERATE NORMALS,
divisions, blueApp)):
sceneBG.addChild (tqg) ;
divisions++;
System.out.println(divisions) ;

45

Adding the Checker Floor

CheckerFloor

* Not a standard Java3D class

* creates its own branch group

e consists of
— 2 sets of colored tiles, blue and green
—a red colored tile at the center
—labels which are Text2D objects

47

Colored Tiles

e ColoredTiles class extends built in
Shjape3D class

* Uses a QuadArray to represent the tiles

* QuadArray a built in Java3D class

—stores sets of 4 points that define individual
qguadrilaterals

—In this case a flat surface, but quads do not
have to be co-planar

—quads don't have to be connected to each
other

48

Morph and Lathe

* Build shapes by defining an outline and
rotating outline 360 degrees

Exploding a Shape3D

e can alter coordinates of quads to create
an explosion affect

Colored Tiles

* Quad specified with 4 Point3f objects
—four corners of the quad
—order significant

—"front" of the shape is counterclockwise
loop formed by the points

* Individual quads do not have to be
adjacent to other quads

51

CheckerFloor Constructor

// constructor for the CheckFloor class.

public CheckerFloor () {
ArrayList<Point3f> blueCoords = new ArrayList<Point3f>();
ArrayList<Point3f> greenCoords = new ArrayList<Point3f>();
floorBG = new BranchGroup() -,

boolean 1sBlue = false;
// create coordinates of tiles. Each tile 1s 1 unit by 1 ¢

final int LIMIT = (FIOOR_SIZE / 2) - 1;
for(int z = -FLOOR SIZE / 2; z <= LIMIT; z++) {
isBlue = !isBlue;

for(int x = —-FLOOR SIZE / 2; X <= LIMIT; x++) {
Point3f[] points = createCoords(x, z):;
ArrayList<Point3f> addTo
= 1sBlue ? blueCoords : greenCoords;
for (Point3f p : points)
addTo.add (p) ;
isBlue = !isBlue;

CheckerFloor Constructor

e continued

for (Point3f p : points)
addTo.add (p) ;
1sBlue = !isBlue;
}

}
floorBG.addChild(new ColoredTiles (blueCoords, blue));

floorBG.addChild(new ColoredTiles (greenCoords, green));

addOriginMarker () ;
labelAxes () ;

53

Creating Points

e Called by constructor to create 4 points
for one time based on anchor point

// create coords. x, z 1s upper left corner of tile

// coords added 1n counter clockwilise fashion 1n order

// to be 1n proper order for quad array

private Point3f[] createCoords (int x, int z) {
Point3f[] result = new Point3f[4];

result[0] = new Point3f(x, 0, z + 1);
result[1l] = new Point3f(x + 1, 0, z + 1);
result[2] = new Point3f(x + 1, 0, z);
result[3] = new Point3f(x, 0, z):;

return result;

54

colored Tiles

* ArraylList contains 4x Point3f to build
QuadArray

* Each tile given a color instead of a
material

—does not react with light

— must calculate normals if wish to base
Appearance on a material

55

colored Tiles Constructor

public ColoredTiles (ArrayList<Point3f> pts, Color3f col) {
plane = new QuadArray(pts.size(),
GeometryArray.COORDINATES | GeometryArray.COLOR 3);

Point3f[] quadPoints = new Point3f[pts.size()];
pts.toArray(quadPoints); // copy elements into array

// 0 1s the starting vertex in the QuadArray
plane.setCoordinates (0, quadPoints);

// set the color of all vertices. Same for all vertices
Color3f[] colors = new Color3f[pts.size()];
Arrays.fill(colors, col);

plane.setColors (0, colors);

// 1nherited method from Shape3D
setGeometry (plane);

setAppearance () ;

Checker Floor

| £ Checkers3D o] B /S

(Vg
L
=

-

Q

Q

r
O
=

-
O

!

-

O

O
G—

-

<)
4

O

Q
-
C e

Adding Labels

e Back in CheckerFloor class

—two methods

private void labelAxes () {
final int LIMIT = FLOOR SIZE / 2;
Vector3d pt = new Vector3d():;

for(int 1 = -LIMIT; 1 <= LIMIT; 1i++) {
pt.z = 0;
pt.x = i;
floorBG.addChild(makeText (pt, "" + 1));
pt.x = 0;
pt.z = 1i;

floorBG.addChild (makeText (pt, "" + 1));

Adding Labels

private TransformGroup makeText (Vector3d pos, String text) {
Text2D label = new Text2D(text, white,
"SansSerif", 36, Font.BOLD);

// to turn off culling of back of text
Appearance app = label.getAppearance():
PolygonAttributes pa = app.getPolygonAttributes|();
if (pa == null)
pa = new PolygonAttributes/();
pa.setCullFace (PolygonAttributes.CULL NONE) ;
if (app.getPolygonAttributes() == null)
app.setPolygonAttributes (pa);

// to position text

TransformGroup tg = new TransformGroup():
Transform3D transform = new Transform3D();
transform.setTranslation (pos) ;
tg.setTransform(transform);

tg.addChild (label);

return tg;

Effects of Culling

 demo program when culling performed
on colored Tiles and text

‘Checkers3D

61

Creating and Positioning Camera
e Back in WrapCheckers3D class

private void initUserPosition() {
// necessary to get the Transform group for the
// viewing platform in order to position 1it.
ViewingPlatform vp = su.getViewingPlatform();
TransformGroup steerTG = vp.getViewPlatformTransform() ;

Transform3D t3d = new Transform3D() ;

// Coples the transform component of the TransformGroup
// into the passed transform object. (So we can

// move 1it.)

steerTG.getTransform(t3d) ;

// args are: viewer posn, where looking, up direction

// recall USERPOSN is (0, 5, 20) // x, y, z

t3d.lookAt (USERPOSN, new Point3d(0,0,0), new Vector3d(0,1,0));
t3d.invert () ;

steerTG.setTransform(t3d) ;
changeClips () ;|

Initial Position

* SimpleUniverse create viewing platform
for us

* lookAt method to set position

63

lookAt method

* the lookAt method makes the object being
translated face towards the ViewPlatform,
which actually makes the ViewPlatform
face exactly away from our scene, so we

invert it at that point.
lookAt

public void lookAt (Point3d eye,
Point3d center,
Vector3d up)

Helping function that specifies the position and orientation of a view matrix. The mnverse of this
transform can be used to control the ViewPlatform object within the scene graph.

Parameters:
eye - the location of the eye
center - a pomnt in the virtual world where the eye is looking
up - an up vector specifying the frustum's up direction 64

Orbit Controls

* Simple way to allow mouse to move the
viewing platform

private void orbitControls (Canvas3D canvas3d) {

// to move the view point 1n the same direction as mouse
OrbitBehavior orbit = new OrbitBehavior (canvas3d,
OrbitBehavior.REVERSE ALL);

orbit.setSchedulingBounds (bounds) ;
ViewingPlatform vp = su.getViewingPlatform();
vp.setViewPlatformBehavior (orbit);

65

