
CS324e - Elements of Graphics 

and Visualization

Checkerboard World



Larger Example - From KGPJ
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Classes (Not All)

3

Checkers3D 

extends JFrame

WrapCheckers3D 

extends JPanel

CheckerFloor
coloredTiles

Extends Shape3D

Sphere



Checkers3D 

• Extends JFrame

• Similar to frame from HelloUniverse

• Contains the panel that contains the 

canvas3D

• Could add other GUI components

– controls or menu items to affect the 3d 

scene
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WrapCheckers3D
• extends JPanel

• Contains the Canvas3D

• Canvas3D a GUI component

• Canvas3D show up on top of other swing 
components if you try and mix them

– doesn't play well

– keep separate

– don't try to put buttons or scroll bars in canvas

• No animation loop

– Canvas3D and Scene graph self monitor and if 
something changes redraw automatically
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WrapCheckers3D

• Most of the code to set up the 3D world

• Instance variables and class constants

• Where is USERPOSN located?
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Creating the World
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Creating the Scene Graph

8



Lighting the Scene

• four kinds of lights can be placed in a Java3D 
world

– ambient light

– directional lights

– point lights

– spot lights

• Scene can have multiple lights

• Lights have color, position (possibly), 
direction (possibly), attenuation (possibly) 
attributes
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Lights
• Ambient lights

– Uniform in all directions and locations

– create AmbientLight object, give it a color, and 

add as a node to scene graph

– Color3f each channel (red, green, blue defined 

with value between 0 and 1
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Spheres and Ambient Light
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Directional Lights

• fixed direction

• no specific location (think of it as being at 

an infinite distance away from scene)

• light rays are parallel
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Directional Light
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Directional Light



Point Light

• Has a location in the scene

• emits in all directions

• has a color

• has an attenuation, intensity decreases 
as distance from light increases
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Point Light

• Attenuation of Point Light has three 

factors:

– constant attenuation, ac

– linear attenuation, la

– quadratic attenuation, qa

• light intensity at a given point distance d 

away from the light =

1.0 / (ac + la * d + qa * d * d)
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Point Light
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Point Light

• Change y coordinate of location from 10 

to 20

• We see the things the light interacts with
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Spotlight

• Similar to Point Light

• has location and direction, but does not 

emit light in all directions

• emits light in a cone shape region

• attenuation like Point Light, but add 

attenuation for light rays away 

from central direction
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Spotlight
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Spotlight Effects

• attenuation changed to PI / 2
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Spotlight Effects

• Concentration changed from 100 to 10, 

spread angle still set at PI / 2 
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Background

• can add a background image or color

• draw at the back of a scene and is not 

altered by camera movement in the 

scene
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Background Code
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Background Effect - Color

• ambient and directional lights

25



Background Effect - Image
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Adding Shapes

• Documentation for Java3D package at

http://download.java.net/media/java3d/j

avadoc/1.5.1/index.html

• Add visible objects to a scene requires 

adding Primitives or creating a class that 

extends Shape3D

• built in subclasses of primitive include:

– box, cone, cylinder, sphere
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Adding Spheres

• Multiple Sphere constructors but all have 

some variation of these parameters

– radius, size of sphere

– primFlags, A number of constants that affect 

how the sphere is created (for example should 

the appearance be allowed to be changed)

– divisions, affects the number of polygons used 

to construct the sphere (divisions != total 

number)

– appearance, how the sphere should look
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Sphere Constructor
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• primflags - refer to Sphere class for options, 

GENERATE_NORMALS in our case

• radius = 2.0f

• vary divisions from 4 to 31

• Appearance, show wireframe and blue 

materials



Appearances

• Program includes two hard coded 

appearances for the spheres

• First, just show the polygons
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Wireframes

• By default inside faces are culled, not 

visible

• notice difference in divisions

– why not just crank divisions up to 100s?
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Wireframes

• CULL_NONE

• Notice difference in smaller divisions

• we see lines the "backs" of lines
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Wireframes

• Using POLYGON_POINT instead of 

POLYGON_LINE

33



Polygon Attributes

• Using POLYGON_FILL
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Changing Color

• Color attribute of an appearance can be 

changed, default is white
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Materials

• More realistic appearances created using 
materials

• Material class

• specify four colors and a value for 
shininess (1 to 128)

• four colors for ambient, emissive, diffuse, 
and specular properties of the material

• Define how light interacts with the 
material and the light it gives off. 
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Material Properties

• Ambient Color: how much (and what 

color) ambient light is reflected by the 

material

• Recall when only ambient light in the 

world
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Material Properties

• Emissive Light

– the color of light the material gives off itself

– material glows, but does not illuminate 
other materials

– to create a flashlight pair a spotlight and a 
shape with a material that gives off light

– examples so far emissive light for spheres 
was black (none)

– dim the lights and let the spheres give off a 
bright yellow light
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Emissive Light

• No other lights
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Diffuse and Specular Properties

• Ambient color is response to ambient light 

which appears to come from all directions

• diffuse color reflects light coming from one 

direction (directional, point, and spot lights)

– angle in != angle out

– various angles of reflection

• specular color,  follows law of reflection

– angle in = angle out
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Materials
• Billiard Ball like material

• ambient emissive diffuse specular shininess

• (red, black, red, white, 70)

• notice glinting off edges
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Materials

• Specular set to black
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Materials

• ambient emissive diffuse specular shininess

• (red, black, white, white, 25)
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Positioning Spheres

• To position spheres 

each has its own 

Transform Group

• change x, y, and z 

for each transform 

group

• can't just update 

one TG, otherwise 

position changes

Branch Group

Simple Universe

Transform 

Group

Sphere

Transform 

Group

Sphere

Transform 

Group

Sphere



Positioning Spheres
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Adding the Checker Floor
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CheckerFloor

• Not a standard Java3D class

• creates its own branch group

• consists of 

– 2 sets of colored tiles, blue and green

– a red colored tile at the center

– labels which are Text2D objects

47



Colored Tiles

• ColoredTiles class extends built in 
Shjape3D class

• Uses a QuadArray to represent the tiles

• QuadArray a built in Java3D class

– stores sets of 4 points that define individual 
quadrilaterals

– In this case a flat surface, but quads do not 
have to be co-planar

– quads don't have to be connected to each 
other
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Morph and Lathe

• Build shapes by defining an outline and 

rotating outline 360 degrees
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Exploding a Shape3D

• can alter coordinates of quads to create 

an explosion affect
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Colored Tiles

• Quad specified with 4 Point3f objects

– four corners of the quad

– order significant

– "front" of the shape is counterclockwise 

loop formed by the points

• Individual quads do not have to be 

adjacent to other quads
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CheckerFloor Constructor
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CheckerFloor Constructor

• continued
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Creating Points

• Called by constructor to create 4 points 

for one time based on anchor point
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colored Tiles

• ArrayList contains 4x Point3f to build 

QuadArray

• Each tile given a color instead of a 

material

– does not react with light

– must calculate normals if wish to base 

Appearance on a material
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colored Tiles Constructor
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Checker Floor
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Checker floor - Only Green Tiles
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Adding Labels

• Back in CheckerFloor class

– two methods
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Adding Labels
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Effects of Culling

• demo program when culling performed 

on colored Tiles and text
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Creating and Positioning Camera

• Back in WrapCheckers3D class
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Initial Position

• SimpleUniverse create viewing platform 

for us

• lookAt method to set position
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lookAt method

• the lookAt method makes the object being 

translated face towards the ViewPlatform, 

which actually makes the ViewPlatform

face exactly away from our scene, so we 

invert it at that point.
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Orbit Controls

• Simple way to allow mouse to move the 

viewing platform
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