
CS324e - Elements of Graphics

and Visualization

Checkerboard World

Larger Example - From KGPJ

2

Classes (Not All)

3

Checkers3D

extends JFrame

WrapCheckers3D

extends JPanel

CheckerFloor
coloredTiles

Extends Shape3D

Sphere

Checkers3D

• Extends JFrame

• Similar to frame from HelloUniverse

• Contains the panel that contains the

canvas3D

• Could add other GUI components

– controls or menu items to affect the 3d

scene

4

WrapCheckers3D
• extends JPanel

• Contains the Canvas3D

• Canvas3D a GUI component

• Canvas3D show up on top of other swing
components if you try and mix them

– doesn't play well

– keep separate

– don't try to put buttons or scroll bars in canvas

• No animation loop

– Canvas3D and Scene graph self monitor and if
something changes redraw automatically

5

WrapCheckers3D

• Most of the code to set up the 3D world

• Instance variables and class constants

• Where is USERPOSN located?
6

Creating the World

7

Creating the Scene Graph

8

Lighting the Scene

• four kinds of lights can be placed in a Java3D
world

– ambient light

– directional lights

– point lights

– spot lights

• Scene can have multiple lights

• Lights have color, position (possibly),
direction (possibly), attenuation (possibly)
attributes

9

Lights
• Ambient lights

– Uniform in all directions and locations

– create AmbientLight object, give it a color, and

add as a node to scene graph

– Color3f each channel (red, green, blue defined

with value between 0 and 1

10

Spheres and Ambient Light

11

Directional Lights

• fixed direction

• no specific location (think of it as being at

an infinite distance away from scene)

• light rays are parallel

12

13

Directional Light

14

Directional Light

Point Light

• Has a location in the scene

• emits in all directions

• has a color

• has an attenuation, intensity decreases
as distance from light increases

15

Point Light

• Attenuation of Point Light has three

factors:

– constant attenuation, ac

– linear attenuation, la

– quadratic attenuation, qa

• light intensity at a given point distance d

away from the light =

1.0 / (ac + la * d + qa * d * d)

16

Point Light

17

Point Light

• Change y coordinate of location from 10

to 20

• We see the things the light interacts with

18

Spotlight

• Similar to Point Light

• has location and direction, but does not

emit light in all directions

• emits light in a cone shape region

• attenuation like Point Light, but add

attenuation for light rays away

from central direction

19

Spotlight

20

Spotlight Effects

• attenuation changed to PI / 2

21

Spotlight Effects

• Concentration changed from 100 to 10,

spread angle still set at PI / 2

22

Background

• can add a background image or color

• draw at the back of a scene and is not

altered by camera movement in the

scene

23

Background Code

24

Background Effect - Color

• ambient and directional lights

25

Background Effect - Image

26

Adding Shapes

• Documentation for Java3D package at

http://download.java.net/media/java3d/j

avadoc/1.5.1/index.html

• Add visible objects to a scene requires

adding Primitives or creating a class that

extends Shape3D

• built in subclasses of primitive include:

– box, cone, cylinder, sphere

27

Adding Spheres

• Multiple Sphere constructors but all have

some variation of these parameters

– radius, size of sphere

– primFlags, A number of constants that affect

how the sphere is created (for example should

the appearance be allowed to be changed)

– divisions, affects the number of polygons used

to construct the sphere (divisions != total

number)

– appearance, how the sphere should look

28

Sphere Constructor

29

• primflags - refer to Sphere class for options,

GENERATE_NORMALS in our case

• radius = 2.0f

• vary divisions from 4 to 31

• Appearance, show wireframe and blue

materials

Appearances

• Program includes two hard coded

appearances for the spheres

• First, just show the polygons

30

Wireframes

• By default inside faces are culled, not

visible

• notice difference in divisions

– why not just crank divisions up to 100s?

31

Wireframes

• CULL_NONE

• Notice difference in smaller divisions

• we see lines the "backs" of lines

32

Wireframes

• Using POLYGON_POINT instead of

POLYGON_LINE

33

Polygon Attributes

• Using POLYGON_FILL

34

Changing Color

• Color attribute of an appearance can be

changed, default is white

35

Materials

• More realistic appearances created using
materials

• Material class

• specify four colors and a value for
shininess (1 to 128)

• four colors for ambient, emissive, diffuse,
and specular properties of the material

• Define how light interacts with the
material and the light it gives off.

36

Material Properties

• Ambient Color: how much (and what

color) ambient light is reflected by the

material

• Recall when only ambient light in the

world

37

Material Properties

• Emissive Light

– the color of light the material gives off itself

– material glows, but does not illuminate
other materials

– to create a flashlight pair a spotlight and a
shape with a material that gives off light

– examples so far emissive light for spheres
was black (none)

– dim the lights and let the spheres give off a
bright yellow light

38

Emissive Light

• No other lights

39

Diffuse and Specular Properties

• Ambient color is response to ambient light

which appears to come from all directions

• diffuse color reflects light coming from one

direction (directional, point, and spot lights)

– angle in != angle out

– various angles of reflection

• specular color, follows law of reflection

– angle in = angle out

40

Materials
• Billiard Ball like material

• ambient emissive diffuse specular shininess

• (red, black, red, white, 70)

• notice glinting off edges

41

Materials

• Specular set to black

42

Materials

• ambient emissive diffuse specular shininess

• (red, black, white, white, 25)

43

Positioning Spheres

• To position spheres

each has its own

Transform Group

• change x, y, and z

for each transform

group

• can't just update

one TG, otherwise

position changes

Branch Group

Simple Universe

Transform

Group

Sphere

Transform

Group

Sphere

Transform

Group

Sphere

Positioning Spheres

45

Adding the Checker Floor

46

CheckerFloor

• Not a standard Java3D class

• creates its own branch group

• consists of

– 2 sets of colored tiles, blue and green

– a red colored tile at the center

– labels which are Text2D objects

47

Colored Tiles

• ColoredTiles class extends built in
Shjape3D class

• Uses a QuadArray to represent the tiles

• QuadArray a built in Java3D class

– stores sets of 4 points that define individual
quadrilaterals

– In this case a flat surface, but quads do not
have to be co-planar

– quads don't have to be connected to each
other

48

Morph and Lathe

• Build shapes by defining an outline and

rotating outline 360 degrees

49

Exploding a Shape3D

• can alter coordinates of quads to create

an explosion affect

50

Colored Tiles

• Quad specified with 4 Point3f objects

– four corners of the quad

– order significant

– "front" of the shape is counterclockwise

loop formed by the points

• Individual quads do not have to be

adjacent to other quads

51

CheckerFloor Constructor

52

CheckerFloor Constructor

• continued

53

Creating Points

• Called by constructor to create 4 points

for one time based on anchor point

54

colored Tiles

• ArrayList contains 4x Point3f to build

QuadArray

• Each tile given a color instead of a

material

– does not react with light

– must calculate normals if wish to base

Appearance on a material

55

colored Tiles Constructor

56

Checker Floor

57

Checker floor - Only Green Tiles

58

Adding Labels

• Back in CheckerFloor class

– two methods

59

Adding Labels

60

Effects of Culling

• demo program when culling performed

on colored Tiles and text

61

Creating and Positioning Camera

• Back in WrapCheckers3D class

62

Initial Position

• SimpleUniverse create viewing platform

for us

• lookAt method to set position

63

lookAt method

• the lookAt method makes the object being

translated face towards the ViewPlatform,

which actually makes the ViewPlatform

face exactly away from our scene, so we

invert it at that point.

64

Orbit Controls

• Simple way to allow mouse to move the

viewing platform

65

