CS324e - Elements of Graphics
and Visualization

Animation in Java3D

Adding Animation

* Animation in Java2D achieved by
changing the position (or some other
attribute) of the graphic primitive over
time

* Animation framework from FRC
simplified things, but still changing
attributes of the primitives ourselves

e Different in Java3D

Alphas

* First step to create animation in Java3D is
to create an Alpha, Java3D class

—not to be confused with the alpha channel
present in some color spaces

* Similar to the Animator objects from FRC
Timing framework

e Generate a series of values over time

Sample Alpha Creation

// create the alpha

Alpha a = new Alpha(-1, 2000); // continuous, 2 seconds
// make alpha go up and down, a triangle wave

a.
// same time to come down to 0 as 1t 1s to go up to 1
a.
.setAlphaAtOneDuration (2000) ;
.setIncreasingAlphaRampDuration (1000) ;
.setDecreasingAlphaRampDuration (1000) ;
.setTriggerTime (2000);

(API A D A PP

setMode (Alpha. INCREASING ENABLE | Alpha.DECREASING ENABLE) ;

setDecreasingAlphaDuration (5000) ;

— parameters for

—loop count (humber of repetitions),

—mode (increasing or decreasing or both)
—trigger time, when to start

—duration and ramp times (ramp = acceleration)
—time pause at one and zero .

Output of Alpha

* |gnoring the ramp times:

1.0

value

0.0

1 2 3 4 5 6 7 8 9 10 11 12

time in seconds >

Result

* Notice delay at start and time paused at top

Interpolators

Alphas are not enough to create
animation in the Java3D scene

results of Alpha must be fed to an
Interpolator which in turn alters
properties of a 3D primitive

Several kinds of interpolators

Color, Transform, Transparency,
PositionPath, Rotation, Scale,

PositionPath Interpolator

* Movement shown in clip achieved via a
PositionPathlnterpolator

// create a translation interpolator to change position

float[] knots = {0, 0.75f, 1};

Point3f[] points = {new Point3f (-5, 1, 0), new Point3f(5, 1, 0),
new Point3f(5, 6, -2)};

PositionPathInterpolator movement

= new PositionPathInterpolator(a, tg,
new Transform3D(), knots, points);

movement . setSchedulingBounds (bounds) ;

tg.addChild (movement) ;

— a = alpha

— tg = transform group interpolator acting on
— Transform3D = local coordinate system

— knots = how to split up alpha

— points = positions to move between

Points and Knots

e Points are 3d coordinates

— start position same as start position of large
colored cube

— what will happen if itisn't?

* Knots are proportions
— must match number of points or error
— first must be 0.0, last must be 1.0

— must be strictly increasing, each value greater
than the last

* knots specify what fraction of alpha to move
from one point to the next

SceneGraph for Simple Motion

scene
Branch
Group

Transform (-5,1,0)

Group

(-5, 1, 0)
/

Transform
Group

large

PositionPath
ColoredCube

Interpolator

small
ColoredCube

10

Add Rotation to the Large Cube

 Another Interpolator

// Create a transform group node to rotate the cube about
// 1ts y axls and enable the TRANSFORM WRITE capability so
// that the rotation behavior can modify 1t at runtime.
TransformGroup cubeRotate = new TransformGroup():
cubeRotate.setCapability (TransformGroup.ALLOW TRANSFORM WRITE) ;

tg.addChild (cubeRotate) ;

Alpha rotationAlpha = new Alpha (-1, 2000);

RotationInterpolator rotator =
new RotationInterpolator (rotationAlpha, cubeRotate,
new Transform3D(), 0.0f, (float) Math.PI * 2.0f);

rotator.setSchedulingBounds (bounds) ;
cubeRotate.addChild (rotator);

e one approach requires adding another TG
which will be rotated

11

New Scene Graph

scene
Branch
Group

(-5, 1, 0)

Transform
Group

Transform
Group

PositionPath
Interpolator

Transform
Group

large
ColoredCube

Rotation
Interpolator

small
ColoredCube

12

Steps to Add Object and Animation

 The panel that holds our 3D scene has a
BranchGroup object named sceneBG

// 1instance vars

private SimpleUniverse su;
private BranchGroup sceneBG;
private BoundingSphere bounds;

* All of the objects in the scene are
children of the sceneBG or descendants

13

Adding a visible Object to Scene

 Add one sphere

e create Appearance for sphere based on
ColoringAttributes, Material, or others
(line, polygon, texture)

* Create Sphere

—size, primFlags (GENERATE_NORMALS
usually), divisions, appearance

14

Adding Object to Scene

 |f add sphere to sceneBG placed at origin
of the scene

private void addSphere () {
ColoringAttributes ca = new ColoringAttributes();
ca.setColor(.77f, .12f, .24f);
Appearance ap = new Appearance():;
ap.setColoringAttributes (ca);
Sphere sp = new Sphere (3, Sphere.GENERATE NORMALS, 50, ap);
sceneBG.addChild (sp) ;

Positioning Sphere

* To position Sphere somewhere besides
the origin we must create a Transform3D
to specify the position

 Then create a TransformGroup using that
Transform3D

 Then add the sphere as a child to that
TransformGroup

* Add the transform group as a child to the
sceneBG

16

Positioning Sphere - Code

Sphere sp = new Sphere (3, Sphere.GENERATE NORMALS, 50, ap):;

// position

Transform3D td3 = new Transform3D() ;
td3.setTranslation (new Vector3f (5, 15, -20)); // %, vy, z
TransformGroup tg = new TransformGroup (td3) ;
tg.addChild (sp)

sceneBG.addChild (tqg) ;

| Interpolator Sample o & =S

Animate Sphere

Create new transform group for interpolator

set READ and WRITE capabilities on
Transform group

Create Alpha for Interpolator

Create Interpolator

Set scheduling bounds for interpolator
add interpolator to TransformGroup

add transform group to sceneBG or other
transform group

—to move sphere and have scale change new
two transform groups

18

Create TG for Interpolator and Create Alpha

// scale

TransformGroup scaleTG = new TransformGroup()
scaleTG.setCapability (TransformGroup.ALLOW TRANSFORM READ) ;
scaleTG.setCapability(TransformGroup.ALLOW TRANSFORM WRITE) ;

Alpha alpha = new Alpha(-1, // loopCount, -1 = repeating
Alpha.DECREASING ENABLE | Alpha.INCREASING ENABLE,
0, // triggerTime
0, // phaseDelayDuration
4000, // increasing Alpha duration
0, // increasing ramp duration
1000, // time at one
2000, // decreasing Alpha duration
0, // decreasing ramp duration
3000); // time at zero

19

Create Interpolator, Set Scheduling Bounds

ScaleInterpolator si = new ScaleInterpolator(
alpha, // the alpha used by interpolator
scaleTG, // target transform group
new Transform3D(), // local coordinate system,
// scale done about origin
0.2f, // min scale
5); // max scale
si.setSchedulingBounds (bounds) ;

20

Assemble Scene Graph

scene
Branch
Group

// assemble scene graph
scaleTG.addChild (s1) ;
scaleTG.addChild (sp);
positionTG.addChild (scaleTG) ;

sceneBG.addChild (positionTG) ; Transform 00sitionTG
Group (-5, 15, -20)
Transform scaleTG

Group

Si
Scale
Interpolator

sp
Sphere

21

Result

| - —~

| Interpolator Sample o || B2

Java3D Tutorial

Interpolator Programming Pitfalls

Interpolator objects are derived from. and closely related to, behavior objects. Consequently. using
mterpolator objects give rise to the same programming pitfalls as using behavior objects (see Programming
Pitfalls of Using Behavior Objects on page 4-9). In addition to these. there are general Interpolator
programming pitfalls. and specific pitfalls for some interpolator classes. Two general pitfalls are listed here
while the interpolator class specific ones are listed with the appropriate class' reference blocks in the next
section.

One potential interpolator programming pitfall is not realizing that interpolator objects clobber the value of

1.é¢ 41l 21 B 1

its target objects. You inight this 1k that the Transforr irget of a RotationInterpolator can be used to
1slate the visual obi in addition to the rotation provided by the interpolator Tlll\ 1s not true. The
t1a11>t01111 set in the tar get TlansfonnGloup object 1s re-written on cach trame the Alpha object 1s active.

This also means that two interpolators can not have the same target object'’.

Another general interpolator pitfall is not setting the appropriate capability for the target object. Failing to
do so will result in a runtime error.

Animation in Java3D:
http://java.sun.com/developer/onlineTraining/java3d/j3d tutorial ch5.pdf

General Java3D tutorial:
http://java.sun.com/developer/onlineTraining/java3d/

23

Controlling Movement

In the examples so far animation was
continuous

Animation can be controlled via Java3D
classes such as Behaviors or Picking

Or via a Java2D GUI that causes
interpolators to run

Example of second kind

24

User Initiated Movement

r@ Moving Spheres [@ @‘

25

User Activated Movement

Click on a green circle in panel on right
creates a new Alpha and starts it

—move method in 3D world

Each Sphere part of a graph that has its
own PositionPathlnterpolator

Start movement by creating and starting
a new Alpha

26

move Method

public void move (int sphereNum) {
PositionPathInterpolator active = movers.get (sphereNum) ;
// pick a random height to move above the origin
float randomHeight =
(float) (Math.random() * 3 * (sphereNum + 1) + 3);
Point3f aboveOrigin = new Point3f (0, randomHeight, O0);
active.setPosition (2, aboveOrigin);

// create a new Alpha

Alpha newAlpha = new Alpha(l, MOVE TIME * 1000);

// update start time so it moves now.
newAlpha.setStartTime (System.currentTimeMillis() + 200);
active.setAlpha (newAlpha) ;

// start the interpolator
active.setEnable (true) ;

27

movers
 movers is an ArraylList of PositionPathlnterpolators

private void addSpheres (Appearance app,
ArrayList<PositionPathInterpolator> pieces) {

float size = 1;

float x = -8;

float v = 1;

float z = -10;

Alpha dummyAlpha = new Alpha (-1, 1);

Transform3D defaultTransform = new Transform3D();
Point3f origin = new Point3f (0, 0, 0);

float[] ballMoveKnots = {0, .3f, .e6f, 1};

int numSpheres = 5;

for(int 1 = 0; 1 < numSpheres; 1++) {

Transform3D t3d = new Transform3D();

t3d.set (new Vector3f(x, vy, z)):

TransformGroup tg = new TransformGroup (t3d) ;
tg.setCapability (TransformGroup.ALLOW TRANSFORM WRITE) ;
tg.addChild (new Sphere(size, app)):

Creating and Positioning Spheres

for(int i = 0; 1 < numSpheres; i++) {

Transform3D t3d = new Transform3D();

t3d.set (new Vector3f(x, vy, z)):

TransformGroup tg = new TransformGroup (t3d);
tg.setCapability (TransformGroup.ALLOW TRANSFORM WRITE) ;
tg.addChild (new Sphere(size, app)):

Point3f sphereHome = new Point3f(x, y, z):;

Point3f[] pointsToMove = {sphereHome, origin, origin, sphereHome};

PositionPathInterpolator mover = new PositionPathInterpolator (dummyAlpha,
tg, defaultTransform, ballMoveKnots, pointsToMove);

mover.setEnable (false);

mover.setSchedulingBounds (bounds) ;

tg.addChild (mover) ;

pieces.add (mover) ;

sceneBG.addChild (tg) ;

29

