
CS324e - Elements of Graphics 

and Visualization

Java GUIs - Event Handling



Event Driven Programming

• A "Programming Paradigm"
– others: object-oriented, functional, data -flow, 

procedural, and more!

• Most early programs we write:
– get data

– perform computations

– output results

– CRUD programming (Create, Read, Update, 
Delete)

• That's not how most programs we use 
actually behave.

2



Event Driven Programming

3



GUIs and Events

• Most programs sit there and wait for the 

user to respond

• Flow of control is based on user actions

• User action is an event that the program 

responds to

• Different languages have different levels 

of support for doing event driven 

programming

4



Events Handling

• High level approach:

– fixes set of events and 

can attach code to the 

event: android:onclick

• Low level approach

– must write code to check 

if events have occurred 

and deal with them in 

other code

– Big old switch statement

5



Java Event Handling

• Java is in between the high level and low 
level approaches 

• Built in GUI components in Swing:

– buttons, check box, combo box, lists, 
menus, radio buttons, sliders, spinners, text 
fields, password text fields, labels, trees, 
color chooser, file chooser, separators, 
progress bars, trees, tables, and more

http://docs.oracle.com/javase/tutorial/ui/features/components.html

6



Java Event Handling

• These built in components can be added 

to top level containers such as frames 

(menus) and panels

– Position is handled via a layout manager

– initially we will use default layout manager 

FlowLayout

• components added one after another in a line

• Components are drawn and generate 

events

7



New Sample Program

• Program with buttons 
– background color changes 

when button pressed

• Main program -> frame -> 
panel

• Panel has an instance 
variable currentColor

• When paint component 
called, background set to 
currentColor

• demo

8



Add Buttons

• Add Buttons to the panel

9



Result of Adding Buttons

• Notice order of buttons

• What happens if 
change order of 
names?

• What happens if add 
more buttons?

• What happens if resize 
Frame?

• What happens if 
Button pressed?

10



Listeners

• When the buttons are pressed events are 

being generated, but no one is listening

• In other words we don't have any code 

that responds to the events

• We need to create listeners for each 

button to listen for the event and 

respond by changing background color

11



ActionListener

• LOTS of kinds of listeners

• All extend or implement the EventListener

interface
• http://docs.oracle.com/javase/7/docs/api/java/util/EventListener.html

• We will create a class that implements the 

ActionListener interface

12



Try a Separate Class

• Create a ColorAction class

– instance vars

– constructor

– actionPerformed method

• repaint -> request an entire component 
be repainted. Don't call paintComponent

• array of colors

• build ColorAction and attach to each 
button

13



ColorAction class

14



Change Panel Class

• create setColor method

• add array of colors

• change constructor

– call addActionListener on each button and 

add an appropriate ColorAction

15



Changes to EventExamplePanel

• Demo -> Examine output of ActionPerformed

• Add more buttons and colors 
16


