
CS324e - Elements of Graphics 

and Visualization

More Java2D Graphics



More 2D Graphics "Primitives"

• We have already seen:

– rectangles, ellipses, arcs, lines

• Today:

– curves, polygons, areas, paths

2



Quad Curves

• Quadratic curves

• Defined with 2 end points and a control 
point

• A type of Bézier curve

• A way to model smooth curves

• Given ends points and control points, points 
on the curve are calculated

– popularized by Pierre Bézier for designing 
automobile bodies, based on early work of 
Paul de Casteljau

3



Code to Draw QuadCurve

4



Result

5



Lines from End Points to Control Point

6



Another QuadCurve

• Control point does not need to be on screen

7



Showing Lines from End Points to 

Control Point

8



Use of QuadCurve

• Mapping Application

• Drawing lines (curves) 

between track points

• Uses QuadCurves to 

connect points

9



Aside - Responding to MouseEvent

• Alter program so a mouse click changes 

the control point for the curve

• cx and cy become instance variables

• Create a MouseListener to respond to 

mouse clicks

• add listener to the panel

10



Graphics Fill

• result of g2.fill(quadCurve)

11



Aside fill and draw

• Methods in the Graphics2D class

12



Polymorphism
• Shape is an interface in Java

– the to do list

• Any class that implements the Shape 

interface can be sent as an argument to 

draw and fill

13



Cubic Curve

• Another Bézier

curve, but with 2 

control points

• draw or fill

• s curve if control 

points on 

opposite sides of 

endpoints

14



Cubic Curves

15



General Path

• Combine lines, quad curves, and cubic 

curves into a general path

• can create with a Shape or empty

• methods to moveTo, lineTo, quadTo, 

curveTo

– similar to turtle graphics

• can be drawn or filled

16



General Paths

17



Filling General Paths

• Filling of a general path 

depends on the winding 

rule set for the path

• Two winding rules:

– Path2D.WIND_EVEN_ODD

– Path2D.WIND_NON_ZERO

18



Sample Path

• Path2D.WIND_EVEN_ODD

19



Sample Path

• Path2D.WIND_NON_ZERO

• (Must know direction path drawn)

20



WIND_EVEN_ODD

• To determine if region is inside or outside 

the path draw a line from inside the 

region to outside the path (infinity)

• If the number of crossings is odd then 

the region is inside the path.

• If the number of crossings is even then 

the region is outside the path.

21



Even Odd Example

22

cross path 1 time

odd, inside

cross path 1 time

odd, inside

cross path 2 times

even, outside



Even Odd Result

23



Non Zero Rule

• The direction of the path crossed is 

considered

• Draw line from region to infinity

• Initialize counter to 0

• Every time path crossed "left to right" add 1

• Every time path crossed "right to left" 

subtract 1

• Interior regions have a total not equal to 0

24



Non Zero Example

25

cross left to right

count = 1

cross left to right

count = 1

cross left to right

count = 2



Non Zero Result

26



Change Direction of One Path

27

Result?



Result

• Default of GeneralPath is NON_ZERO

• Does direction of path affect interior 

regions for EVEN_ODD ruler?

28



Areas

• Areas are to General Paths as Rectangles 
and Ellipses, are to Lines and Curves

• Build an area out of multiple shapes

• Constructive Area Geometry - CAG

• Alter area by 

– add (union)

– subtract

– intersection

– exclusive or (union minus intersection)

29



Sample CAG

30



Sample CAG

31

r2

r1
Area a1 = new Area(r1);

Area a2 = new Area(r2);

Area a3 = new Area(c1);

Area a4 = new Area(c2);

Area a5 = new Area(c3);

a1.subtract(a2);

a1.add(a3);

a1.exclusiveOr(a4);

a1.subtract(a5);

// result??

c1

c2

c2


