
CS371m - Mobile Computing

UI Redux, Navigation Patterns,
Tabbed Views, Pagers, Drawers

USER INTERFACE
NAVIGATION OPTIONS

App Navigation Structures

• the Single
Activity app

– focus on a Single
Activity

– calculator

– camera

App Navigation Structures

• the Multiple
Peer Activities
app

• multiple
activities, but all
on same level

• no deeper
navigation

• phone app

App Navigation Structures

• the Rabbit
Hole apps

• deep levels of
navigation

• multiple data
views

• Facebook,
Play Store

Multiple Layers of Navigation

User Interface Patterns

• Just like software patterns, solutions to
recurring UI design problems and situations

• Popular Android navigation patterns:

• Buttons and Simple Targets

• Lists and Grids

• Tabs

• Horizontal Paging

• The Navigation Drawer

NAVIGATION PATTERNS

Buttons and Simple Targets

• Simple and familiar

Lists and Grids

• For collection related screens, especially
text based information

• ListView and GridView

• For photos and videos a scrolling list

Tabbed Navigation

• Apps (should) have a
navigation hierarchy

• Part of UI design is
providing navigation
between the different
screens and activities

• developers need to think
about the navigation so
that users don't

• An alternative is Drawer
Navigation

Navigation

• Descendant Navigation

–moving from high level
to low level

• Lateral navigation

–moving between siblings

– section siblings (in
image)

– content siblings

• think image gallery

TABBED NAVIGATION

Tabs

• Very popular

• used for sibling screens / activities

• Tabs should persist when changing screens
– content changes to new screen, but tabs

remain the same

• changing tabs should not create history
–pressing back does should not cause a tab

back

• tabs should always be at the top of the
screen

Tabs vs. Buttons

• initially selected tab in "parent" screen
provides immediate access to content

• user navigation between screens without
backtracking to parent

• … but, tabs take away space from the
content screens

Tabs

• Tabs can be fixed or scrollable

Implementing Tabs

• Android Studio project creation

Implementing Tabs

• Swipe Views such as Tabs or Lateral
Swipe Navigation use a ViewPager

• An descendant of ViewGroup
– like LinearLayout, TableLayout, …

• Part of the support library

• A set of libraries to allow backward
compatibility of apps
–example, allow use of ActionBar on

pre Android 3.0 devices

ViewPager in layout XML

• add child views with a PageAdapter

– recall the Adapter for the ListView

– FragmentPagerAdapter for fixed # of siblings

– FragmentStatePagerAdapter for a variable
number of views, for example images

Rest of Layout File

• PagerTitleStrip Widget

Activity with Tabbed Navigation

Setting Up The Navigation
in onCreate()

Adding Tabs to ActionBar

PagerAdapter

PagerAdapter

Subviews are Fragments

Clicker Question

• Have you used apps with a Navigation
Drawer?

A. No

B. Yes

C. Maybe?

NAVIGATION DRAWER

Navigation Drawer

• A Drawer is an alternative for providing
navigation through an app
– especially between peer activities

• The drawer moves from the left edge of the
screen when swiped in
– or touch the app icon in the action bar
– action bar altered when drawer displayed

• Drawer philosophy:
– make the current view less cluttered
– easier to move to important activities from

anywhere within app

Example Navigation Drawers

Example Navigation Drawers

• The Drawer becomes
the primary Navigation
tool for the app

• Able to open from most
Activities

• Different paradigm:

– from a content view,
back generally exits the
app

Action Bar Changes

• Drawer overlays content, but not Action Bar

• Action Bar title should change from
Activity Name to App name

• Hide any Action Bar items based on
context of Activity

When to Use a Drawer

• Alternative top level navigation mechanism

–not a replacement for tabs or spinners

• Navigation Drawers are a good option when:

–many (>= 4) top level views

– app requires lateral navigation between low
level activities

–deep navigation branches to ease pain of going
back, back, back, back, …

Navigation Drawer Design

• Items in drawer broken up into rows

• Each row has a title and optional icon

• Possible to collapse multiple items into a
single row

Navigation Bar Design Checklist
• The action bar remains in place and adjusts

its content.
• Your navigation drawer overlays the content.
• Any view represented in the drawer has a navigation

drawer indicator in its action bar that allows the
drawer to be opened by touching the app icon.

• You take advantage of the new visual
drawer transition.

• Any view not represented in the drawer maintains
the traditional Up indicator in its action bar.

• You stay in sync with the general navigation patterns
for Up and Back.

http://developer.android.com/design/patterns/navigation-drawer.html

Navigation Drawer Example

• Display Planets

• Image of planet
from app

• ActionBar item to
search web for
planet

• Drawer to change
planets

Drawer Open

• Note: Action Bar
title change

• Note: removal of
Action Item, search

• Note: drawer does not
cover entire content
view

Implementing a Navigation Drawer

• DrawerLayout APIs in the support library

• Create layout file with DrawerLayout as
the root container

– recall, LinearLayout, FrameLayout, …

• Inside Layout add two components

–one for the regular content

– and another for the Drawer content

– likely a ListView, like the Countries app

DrawerLayout xml

DrawerLayout xml

• main content must be first
– order in layout file sets z ordering, later items

appear on top of earlier items

• main content matches parent width and
height, entire UI when drawer hidden

• drawer view must specify layout gravity
– "start", instead of "left" to support right to left

languages

• height of drawer matches parent, width hard
coded and should be no more than 320 dp
so some portion of main content still visible

Populating Drawer

• Container for drawer is a ListView in example

– typical, although other layouts allowed

• Recall, populate a ListView with an adapter

–ArrayAdapter or SimpleCursorAdapter (for
reading from a data base)

• Example with planets creates ArrayAdapter
attached to String array from a resource file

String Array Resource File

Populating Drawer in onCreate()

DrawerItemClickListener and selectItem()

drawer closing with animation

Responding to Click
• in example

selecting a drawer
item replaces the
content in the DrawerLayout with a new
fragment

Opening and Closing

• YAL!, yet another listener

• call setDrawerListener() on DrawerLayout
and pass an implementation of
DrawerLayout.DrawerListener

• Methods such as

–onDrawerOpened()

–onDrawerClosed()

open / close Alternative

• If app has an ActionBar:

• extend ActionBarDrawerToggle class

• implements the DrawerListener class

• still have to override methods for
drawerOpen and drawerClose

• … but, this class helps handle the
interaction between drawer and action
bar (title, action items)

More from onCreate()

Changing Action Bar Items

• In this instance only one action bar item,
search web for planet name

• hide if drawer is open

Action Bar interaction

• If app has an Action Bar should:

– allow user to open and close drawer by
tapping the app icon

–have an icon indicating the app has a drawer

ActionBarToggle and Lifecycle

Multiple Drawers

• Possible to have another drawer

• left / start drawer for app navigation

• right / end drawer for options with the
current content view

• General Android design:
Navigation on the LEFT
Actions on the RIGHT

• http://tinyurl.com/lnb2jb3

http://tinyurl.com/lnb2jb3

DIALOGS

Dialogs - Old Way

• Dialogs from tutorials were cut and paste

• Implementing Dialogs demonstrates
evolution of Android SDK

• legacy approach has Activity manage its
own Dialogs

• created, initialized, updated, and
destroyed using Activity class call back
methods

Dialogs - New Way

• Android evolving from smartphone OS
to smart device OS

• API level 11 (Android 3.0, the tablet release)
introduced Fragments

• A fragment represents a behavior or a portion
of a UI in an Activity

– like a sub activity

• multiple fragments combined in multi-pane UI

• reuse fragments in multiple activities

Fragments

Dialogs as Fragments

• Dialogs are special type of Fragment

• managed by the FragmentManager class

• still part of an activity, but lifecycle not
managed by the Activity

– life cycle issues of Dialogs as Fragments will
be more difficult to deal with

–must save state and restore instance

Types of Dialogs

• Used to organize information and react
to user events without creating a whole
new activity

• Old Dialogs:

–Dialog, AlertDialog, DatePickerDialog,
TimePickerDialog, ProgressDialog

• New Dialogs:

–DialogFragment

58

Sample Dialogs

59

Legacy Approach

• Dialog defined in Activity it is used

• Activity maintains a pool of Dialogs

• showDialog() method displays Dialog

• dismissDialog() method used to stop
showing a Dialog

– in tutorial, when we have difficulty

• removeDialog removes from pool

Legacy Approach - Steps

• Define unique indentifier for the Dialog
in Activity (constants)

• implement onCreateDialog method,
returns Dialog of appropriate type

onCreateDialog

Dialog Steps - Legacy Approach

• implement onPrepareDialog() if
necessary
– if necessary to update dialog each time it is

displayed

– for example, a time picker, update with the
current time

• launch dialog with showDialog()
– in tutorials done when a menu or action bar

menu item selected

– could launch Dialogs for other reasons

Alert Dialogs

• Most common type

• Title, Content Area, Action buttons (up to 3)

• Content area could be message, list,
seekbar, etc.

• set positive,
set negative,
set neutral

Custom Dialogs

• AlertDialog very flexible, but you can
create CustomDialogs

• Create a layout

65

Custom Dialogs

• from onCreateDialog

66

Custom Dialog

• Simple dialogs are dismissed with the
back button

dialog title

67

Dialogs - Fragment Method

• Decouple Dialogs from the Activity
– good SE approach?

– TicTacToe UI is almost 500 lines long!

• Implement a class that is a subclass of
DialogFragment
–DifficultyFragment

– Send info to newInstance method (current
difficulty, listener for updates)

–onCreateDialog now in DifficultyFragment

DifficultyFragment

DifficultyFragment - onCreateDialog

Using DifficultyFragment
• In AndroidTicTacToe create a listener to

pass to the newInstance method

• create and show Dialog as part of
onOptionsItemSelected()

DifficultyListener

Using Fragments

• Fragments added in API level 11, Android 3.0,
the tablet release

• Developers behind Android think fragments
are so important that can be used in pre API
11 builds using the Android Support Library

Froyo and Gingerbread pre API 11

Android Support Library (ASL)

• add library to project and application

• android.support.v4.app.DialogFragment

– for example

– instead of android.app.DialogFragment

• ASL does not support
action bar in earlier
versions of API

–discover
ActionBarSherlock

Fragment Lifecycle

• Common error:

not dealing with
orientation
change when
Dialog is open

http://developer.android.com/guide/components/fragments.html

THEMES

Consistency

• Themes are Android's
mechanism for a consistent
style in an app or activity

• Theme is a predefined style

• sets properties of layouts and
widgets such as
– color

– height

– padding

– font size.
HOLO DARK THEME

New Themes
• Holo light and dark were the

Honeycomb (3.0) themes

• Lollipop (5.0) added the
Material Design theme

• System Widgets that allow
you to pick color palette
(customize)

• Touch feedback animations
for system Widgets

• Activity transition
animations

LIGHT MATERIAL THEME

Setting a Theme

• App theme set in the Manifest

Using Built in Styles

• R.style class

–not to be confused with our R class

R.style

R.style

• Our widgets (buttons, seek bars, edit
texts, etc.) are using the android R.style

• We are overriding some attributes

• Also for Views:

– "@android:style/Theme.NoTitleBar"

R.style

• Not well documented

• Suggestion is too look at the actual xml

• Styles at http://tinyurl.com/nz3j3ak

• Themes at http://tinyurl.com/ls9cxbf

http://tinyurl.com/nz3j3ak
http://tinyurl.com/ls9cxbf

Example Android Style

Example Android Theme

More of the Theme

STYLES

87

Styles

• Defined in XML file

• res/values/style

• similar to a cascading style sheet as used
in html

• group layout attributes in a style and
apply to various View objects (TextView,
EditText, Button)

88

Sample Styles, in styles.xml

89

Apply Style - in main xml

90

Result of Styles

• can override
elements of style

– bottom edit text
overrides color

• one style can inherit
from another

• use UI editor to
create view and then
extract to style

91

