
CS371m - Mobile Computing

User Interface Basics

Clicker Question

• Have you ever implemented a Graphical
User Interface (GUI) as part of a
program?

A. Yes, in another class.

B. Yes, at a job or internship.

C. Yes, on my own.

D. No

Android UIs

• An Android Activity is a single, focused
thing the user can do.

• Has code in a class

• Has a user interface

• One of the four main components
Android uses to interact with our code /
program / app

• Demo apps and point out activities

Android UIs

• An Activity has an associated layouts for
their UI
–Can be several, typically just one that might

change slightly

• Layouts are declared in XML files

• Layouts consist of various Views
–View is an Android class that represents a

rectangular area on the screen and is
responsible for drawing and event handling.

–many, many, many sublcases

VIEWGROUPS - TOP LEVEL
CONTAINERS FOR USER INTERFACES

ViewGroups - Layouts
• Layouts are subclasses of ViewGroup

– Which is a subclass of View.

• Still a view but doesn't actually draw anything.
• serve as a containers for other views

– similar to Java layout managers
– you can nest ViewGroups

• options on how sub views (and view groups) are
arranged

• FrameLayout, LinearLayout, TableLayout,
GridLayout, RelativeLayout, ListView, GridView,
ScrollView, DrawerLayout, ViewPager,
AbsoluteLayout, RecyclerView, and more!

• Demo developer options, show layout bounds

https://developer.android.com/reference/android/view/ViewGroup.html

ViewGroups - Containers

• View are used to organize multiple widgets
into a structure

• Similar to layout managers in Java

• Children can be UI widgets or other
containers

• ViewGroups have a set of rules governing
how it lays out its children in the screen
space the container occupies

Containers (ViewGroups)
and Widgets (Views)

A layout, for example a linear layout

A layout, for example a table layout

TextViews (labels), ImageViews,
Controls such as buttons, etc.

XML UI Configuration

• Layouts can contain UI elements (built in
Android and programmer created)

• res/layout

• "Design by Declaration"

• why?

• tools to parse XML to display result in a
graphical way

–build drag and drop editors

UI Via XML

• Each Screen in your app will likely have an
xml layout file

• describes the container and widgets on the
screen / UI

• Edit xml or use drag and drop editor

• alter container and layout attributes for the
set up you want

• we will then access and manipulate the
container and widgets in our Java code
associated with the UI / screen.

FrameLayout

• FrameLayout

– simplest type of layout object

– fill with a single object (such as a picture)
that can be switched in and out

– child elements pinned to top left corner of
screen and cannot be move

– adding a new element / child draws over
the last one

LinearLayout
• aligns child elements (such

as buttons, edit text boxes,
pictures, etc.) in a single
direction

• orientation attribute defines
direction:

– android:orientation="vertical"

– attribute of View

Modifying Attributes

• in xml, programmatically, and visual editor

Gravity Attribute

• Child element's
gravity attribute

–where to position
in the outer
container

right

center

Weight

• layout_weight
attribute

– "importance" of a view

–default = 0

– if set > 0 takes up more
of parent space

Another Weight Example
button and bottom
edit text weight of 2

button weight 1 and
bottom edit text weight
of 2

LinearLayout - Horizontal Orientation

• padding

• background color

• margins

TableLayout

• rows and columns

• rows normally
TableRows (subclass
of LinearLayout)

• TableRows contain
other elements such
as buttons, text, etc.

RelativeLayout

• children specify position relative to
parent or to each other (specified by ID)

• First element listed is placed in "center"

• other elements placed based on position
to other elements

RelativeLayout XML

RelativeLayout XML

GridLayout

• added in Android 4.0

• child views / controls can span multiple
rows and columns

–different than TableLayout

• child views specify row and column they
are in or what rows and columns they
span

Container Control Classes

• Layouts shown are useful for positioning
UI elements
– the layouts themselves are not interactive

although the child Views may be

• Other available layouts add a level of
interactivity between the user and the
child Views

• ListView, GridView, GalleryView

• Tabs with TabHost, TabControl

• ScrollView, HorizontalScrollView

USER INTERFACE ELEMENTS
WIDGETS

UI Programming with Widgets

• Widgets are an element in a Graphical
User Interface (GUI)
–not to be confused with app widgets placed

on the home screen, mini version of app

• Widgets are building blocks

• User interacts with a given widget

• Often use prebuilt widgets
–Advanced developers create their own

(Chris Renke, Square)

Widgets

• Including:

• Text Views

• EditTexts

• Buttons

• Check Boxes

• Spinners (drop down
menus)

• and many, many more

Widget Attributes

• Size

– layout width

– layout height

• Margin

• Padding

No specified margin
or padding

Top Margin of 30dp
(density independent pixels)

Top Margin of 30dp,
padding of 20dp

http://www.digizol.com/2006/12/margin-vs-padding-css-properties.html
http://www.digizol.com/2006/12/margin-vs-padding-css-properties.html

Size

• Three options:

• Specified (hard coded) size in dp, density
independent pixels

• wrap_content
–widget is just big enough to show content

inside the widget (text, icon)

• match_parent
– match my parent's size

–widgets stored in a container or ViewGroup

Size - Wrap Content

Size - Match Parent

Widgets and Android Studio

• GUI for GUI design and XML

Attributes

• android:padding="20dp" appears in the xml
file for the button and sets the given attribute
to the specified value

• see the view class or appropriate sub
class for attributes
– a lot of attributes

• http://tinyurl.com/y8jj5eo

• attributes can be set in the xml and most
can changed programmatically

http://tinyurl.com/y8jj5eo

Attributes

in layout xml file

in program
Programmatically in Activity (Java code)

Clicker

• What is the purpose of the xml files in the
res/layout directory in an Android project?

A. define all the Java classes in the project

B. define user interfaces

C. localize String resources

D. store graphic image resources such as
jpeg and png files

E. list the permissions the app requests

TYPES OF WIDGETS

Android Controls

• android.widget package

• Not to be confused with application
widgets, mini versions of applications

• Still subclasses of View

• interactive components of the UI

– layouts are the
containers

Adding Controls

• Widgets can be added to the
XML layout or at run time

• Add component in visual
editor and XML code
automatically generated

• tweak XML code as desired

Common Controls - TextView

• a simple label

• display information, not for interaction

• common attributes: width, height, padding,
visibility, text size, text color, background color

– units for width / height: px (pixels), dp or dip
(density-independent pixels 160 dpi base), sp
(scaled pixels based on preferred font size), in
(inches), mm (millimeters)

– recommended units: sp for font sizes and dp for
everything else

– http://developer.android.com/guide/topics/resources/more-resources.html#Dimension

http://developer.android.com/guide/topics/resources/more-resources.html

TextView

• Other possible attributes:

• set number of lines of text that are visible

– android:lines="2"

• ellipssize attribute to add … instead of simply
truncating text

• contextual links to email address, url, phone
number,

– autolink attribute set to none, web, email,
phone, map, or all

Common Controls - Button

• Text or icon or both on View

• button press triggers some action

– set android:onClick attribute in XML file

–OR create a ClickListener object, override onClick
method, and register it with the checkbox

• typically done with
anonymous inner class

–possible to customize
appearance of buttons
http://developer.android.com/guide/topics/ui/
controls/button.html#CustomBackground

http://developer.android.com/guide/topics/ui/controls/button.html

Common Controls - EditText
• Common component

to get information from
the user

• long press brings up
context menu

EditText

• can span multiple lines via android:lines
attribute

• Text fields can have different input
types, such as number, date, password,
or email address

– android:inputType attribute

– affects what type of keyboard pops up for
user and behaviors such as is every word
capitalized

EditText

• Keyboard actions

– specify action when input done

– ime = input method editor

• android:imeOptions attribute

– actionNone, actionSearch, actionSend,
others

– http://developer.android.com/reference/android/widget/TextView.html#attr_android:imeOptions

http://developer.android.com/reference/android/widget/TextView.html

Auto Complete Options
• Depending on EditText inputType suggestions can be

displayed
– works on actual devices

• Other classes exist for auto complete from list
– AutoCompleteTextView

• choose one option

– MultiAutoCompleteTextView
• choose multiple options (examples tags, colors)

AutoCompleteTextView

• Two types

–we provide list of choices

–user provides list

• Developer list

–use ArrayAdapter connected to array

–best practice: put array in array.xml file

AutoComplete Using Array

EditText

• Auto complete option
using device dictionary:

Spinner Controls

• Similar to auto
complete, but user
must select from a set
of choices

Spinner Control

arrays.xml in res/values

Simple User Selections

• CheckBox

– set
android:onClick attribute or create a
ClickListener object, override onClick
method, and register it with the
checkbox

• Switches and ToggleButton

– similar to CheckBox with two states,
but visually shows states

–on and off text

RadioButton and RadioGroup

• Select one option
from a set

• set onClick method for
each button

– generally same method

• Collected in RadioGroup

– sub class of LinearLayout

– vertical or horizontal
orientation

Pickers
• TimePicker and DatePicker

• Typically displayed in a TimePickerDialog
or DatePickerDialog

–dialogs are small windows that appear in
front of the current activity

Indicators

• Variety of built in indicators in addition to
TextView

• ProgressBar

• RatingBar

• Chronometer
• DigitalClock
• AnalogClock

SeekBar
• a slider

• Subclass of progress bar

• implement a
SeekBar.OnSeekBarChangeListener to
respond to changes in setting

http://developer.android.com/reference/android/widget/SeekBar.OnSeekBarChangeListener.html

INTERACTING WITH WIDGETS

Interacting with Widgets

• Some widgets simply display information.

– TextView, ImageView

• Many widgets respond to the user.

• We must implement code to respond to
the user action.

• Typically we implement a listener and
connect to the widget in code.

– logic / response in the code

Example - Display Random Image

• App to display crests
of British Premier
League Football
teams

• Allow user to select
team from spinner
control

• Or, press button to
display a random
crest

TextView

Spinner

ImageView

Button

Button in XML layout file

• Notice button reacts when pressed, but
nothing happens

• Possible to disable button so it does not
react

Responding to Button Press

• Two ways:

• Hard way, create a listener and attach to
the button

– shorter way exists for Views, but this
approach is typical for many, many other
widgets behaviors besides clicking

• Implement an onClickListener and attach
to button

Accessing Button in Code
• R.java file automatically generated and

creates ids for resources in project folder

– if id attribute declared

Setting Activity Layout / GUI

• Usually the GUI for an Activity is set in
the onCreate method.

• Typically a layout file is used

• set content view will inflate runtime
objects for all the widgets in the layout
file

Accessing Layout Widget

• To attach a listener we need a handle
(reference) to the runtime object for the
button (or desired widget)

Accessing Layout Widget

• findViewById returns a View object

–often necessary to cast to correct type

• A whole host of methods to access
resources in your /res directory
programmatically

Creating and attaching a Listener

• setOnClickerListener is method that
attaches the listener

• View.onClickListener is a Java interface
with one method onClick

• We are implementing interface with an
anonymous inner class

onClick Logic

Shortcut for Clicks

• All View objects have an onClick attribute

• method to call when the View is clicked

• Can set onClick attribute to a method in
Activity that is called when View is
clicked

Shortcut for Clicks
• In Activity:

• demo when method signature wrong

Clicker

• What method do we use to associate a
variable with the runtime object of a UI
component declared in a layout xml file?

A. setContentView()

B. startActivity()

C. onCreate()

D. a constructor

E. findViewById()

THEMES AND STYLES

Styles

• Attributes of a View can be set via to a
Style

• A Style is a collection of attributes that
specify the attributes and format of a
View or window

• Styles defined in their own XML file and
referenced by other views

Simplification via Styles

In separate XML file

Themes
• Android defines themes which set default

values for many, many attributes of widgets

• Themes have changed over time with
different releases
– theme

– light

– dark

– material design

• Theme can be set in the Manifest file for the
app

DATA DRIVEN CONTAINERS
LISTVIEW AND GRIDVIEW

Data Driven Containers
• Containers that display

repetitive child Views
• ListView

– vertical scroll, horizontal row
entries, pick item

– consider using ListActivity

• GridView
– specified number of rows and

columns

• GalleryView
– horizontal scrolling list,

typically images

AdapterView
• ListView, GridView, and

GalleryView are all sub classes
of AdapterView

• Adapter generates child Views
from some data source and
populates the larger View

• Most common Adapters

– CursorAdapter used when to
read from database

– ArrayAdapter to read from
resource, typically an XML file

Adapters

• When using an Adapter a layout is defined
for each child element (View)

• The adapter creates Views based on layout
for each element in data source and fills the
containing View (List, Grid, Gallery) with the
created Views
– binding

• child Views can be as simple as a TextView or
more complex layouts / controls
– simple ones provided in android.R.layout

Typical Adapter Example

Data Source - countries resource file

TextView for Data

• ListView filled with TextViews

• TextViews store data from ArrayAdapter

ListView and GridView Results

Selection Events

• ListView, GridView, GalleryView

• Typically user can select one item of data

• Implement the OnItemClickListener class
and set it as the listener

–we will do this a lot:

– create a class that implements some kind of
listener

– register it with a control

Altering the Data and Display

• Previous example read data from
resource file

• What if we want to update list view as
data changes?

– add and remove items

• Example: remove countries from list and
view when selected

Altering Data

• ArrayAdapter serves as a bridge between
a data source and a ListView

• Previous example, data was an array
resource file

– resource file won't change

• Dump data to List (ArrayList) and create
ArrayAdapter from that source

Source Code

Create ArrayList

Alter Data on Select

A Toast
"A toast provides simple

feedback about an
operation in a small
popup."

Creating a Toast

• Inside the OnItemClickListener
anonymous inner class

More Complex List View Items

• What if we want each item in a list to
have more than simple text?

• Let's add a switch to each ListView item
to show if the Country listed is "safe"
or not?

• Each View element in the list will be a
horizontal linear layout with a TextView
and a switch

Not all of layout file shown

Setting Adapter

• Change to use the complex layout for
each ListView item

Result

• Looks okay.

• However...

• Scroll the list
and notice all
safe switches
set to Yes!

• Flip a couple
and scroll

View Recycling

Scroll

UH OH

View Recycling

• Imagine a ListView tied to contacts on a
phone or some other possibly large data set.

• Some people have 1000's of contacts.

• Creating a ListView with a distinct object for
every list element (the Views) would require a
LOT of memory.

• So, the rows in a list view get recycled.
Enough objects are created for the visible
items, but as they scroll off the objects are
reused and the data in the widgets is reset to
what the user should see.

View Recycling
We set the switch on the row that contains Andorra to
no. The we scrolled down the list. The List View item that
contains Andorra is recycled.
The adapter we are using automatically alters the text, but
the switch is still set to no!

Taking Control of Recycling

• We need to track the status of safe for
each country and change the switch
position as appropriate when a list view
item gets recycled

• This requires creating two classes:

–one to model the data for each row

–our own Adapter that extends ArrayAdapter

CountryRowData

• Simple nested class to model and track
the data in a row

New onCreate Method

• Create list of CountryRowData objects
and send to our new Adapter class

Extending ArrayAdapter

Listening for Changes to Switches

Set Switch to Correct Value

Explanation of Adapter

• Our SafeAdapter class lets ArrayAdapter
inflate and recycle the row

– call to super.getView

– this will set the country name

– inflate = take an xml layout and create a
runtime object to model it, measure and
draw the object

• Then we check to see if we have a
ViewHolder in the rows tag.

Explanation of Adapter

• If we don't have a ViewHolder for the
current row we create one and associate
it with the row

• We add a switch listener for the switch in
the row

https://developer.android.com/training/improving-layouts/smooth-scrolling.html#ViewHolder

ViewHolder and Tags

• All View objects (all GUI widgets are
descendants of View) have a setTag() and
getTag() method

• These methods allow us to associate an
arbitrary object with the View (widget)

• The holder pattern uses the widget tag to
hold an object which in turn holds each
of child widgets of interest

ViewHolder and Tags

• The purpose of attaching a holder to the
row Views is to avoid calling
findViewById() again

– can be slow

Recycling of ListView Elements

• LOOK HERE FOR intercepting the ListView
items:

• http://stackoverflow.com/questions/692
1462/listview-reusing-views-when-i-
dont-want-it-to

http://stackoverflow.com/questions/6921462/listview-reusing-views-when-i-dont-want-it-to

Other Layouts - Tabbed Layouts

• Uses a TabHost and
TabWidget

• TabHost consists of TabSpecs

• can use a TabActivity to
simplify some operations

• Tabs can be

– predefined View

– Activity launched via Intent

– generated View from
TabContentFactory

Scrolling

• ListView supports vertical scrolling

• Other views for Scrolling:
– ScrollView for vertical scrolling

–HorizontalScrollView

• Only one child View
–but could have children of its own

• examples:
– scroll through large image

– Linear Layout with lots of elements

CONCRETE UI EXAMPLE -
TIP CALCULATOR

Concrete Example

• Tip Calculator

• What kind of layout
to use?

• Widgets:

– TextView

– EditText

– SeekBar

TextViews

EditText

All but top
EditText are
uneditable

Alternative?
TextViews?

SeekBar

Layout

• TableLayout

row 0

row 1

row 2

row 3

row 4

row 5

Layout Attributes

• android:background

–#RGB, #ARGB, #RRGGBB, #AARRGGBB

– can place colors in res/values/colors.xml

Color Resources

• Good Resource / W3C colors

–http://tinyurl.com/6py9huk

StretchColumns

• columns 0 indexed

• columns 1, 2, 3 stretch to fill layout width

• column 0 wide as widest element, plus
any padding for that element

Initial UI

• Done via some Drag
and Drop, Outline
view, and editing
XML

• Demo outline view

–properties

Changes to UI

• Outline multiple select
properties
– all TextViews' textColor set to

black #000000

• change column for %DD labels

• use center gravity for
components

Changes to UI

• change bill total and
seekbar to span more
columns

• gravity and padding for text
in column 0

• align text with seekBar

• set seekBar progress to 18

• set seekBar focusable to
false - keep keyboard on
screen

Changes to UI

• Prevent Editing in
EditText

– focusable, long clickable,
and cursor visible
properties to false

• Set text in EditText to
0.00

• Change weights to 1 to
spread out

Functionality

• onCreate instance variables assigned to
components found via ids

• update standard percents:

Functionality - Saving State

• onSaveInstance

– save BillTotal and CustomPercent to the
Bundle

– check for these in onCreate

Functionality Responding to SeekBar

• customSeekBarListener instance variable

• Of type OnSeekBarChangeListener

Create an Anonymous Inner Class

• Class notified when seek bar changed and
program updates custom tip and total amount

• must register with the seekBar instance
variable in onCreate!

Functionality - Total EditText

• Another anonymous inner class
• implement onTextChanged to converts to

double and call update methods
• register with EditText for total in onCreate()!

