
CS371m - Mobile Computing

Responsiveness



An App Idea

• From Nifty Assignments

• Draw a picture use randomness

• Pick an equation at random

• Operators in the equation have the 
following property:
Given an input between -1 and 1 the 
output is also between -1 and 1

• sin and cos scaled to pi / 2, multiply,  
average, remainder (except for 0)



Random Art

• The color at any given point is based on 
the x and y coordinates of that point 
scaled to between -1 and 1

• Feed the x and y coordinates into the 
equation

• Pick equations at random, keep the good 
pictures, throws away the boring ones

• Given the equation we can reproduce the 
image



Random Art

• Color of this pixel?
• Assume large frame is 400 by 300.
• Assume this pixel is at 100, 30
• x = 100 / 400 = 0.25 -> scaled to -1 to 1 = -0.5
• y = 30 / 300 = 0.1 -> scaled to -1 to 1 = -0.8
• Plug these values into random equation:
• Assume equation is  yxASCSySSxCyCACMMSCSSCC

postfix, A = Average, S = Sin, C = Cos, M = Multiply
• Assume answer is 0.75. Scale to number of colors.

Assume 256 shades of gray. 
• Color at that pixel is 224th shade of gray (224, 224, 224)

X+

Y+ 0, 0



Result yxASCSySSxCyCACMMSCSSCC



Result 
xxACSSxCAyCyxASASCAyCCAyyyAAxMS

xCxCAxSySMMCMCSMSCS



Result yCCSxxMSSAS



Results



Results



Results



RandomArt Application

• Create a subclass of View that does the 
computation and draws the graphics

• More on 2d graphics later in term
– but we simply override the onDraw(Canvas) 

method and draw want we want

– colors via Paint objects

– Canvas.drawPoint(x, y, Paint) method

• add click listener to the View so click results 
in new expression and a redraw
– invalidate() -> leads to onDraw(Canvas)



Clciker

• What happens when we run the Random 
Art App and create a new image?

A. Works great

B. Runtime Error

C. Freezes Device Permanently

D. Freezes Device with Error Dialog



The Problem

• Neat idea but 
computationally expensive

• 1080 by 1920 screen on 
Google Nexus 5X

• 2 million plus pixels

• depending on the 
expressions, tens of 
millions of computations, 
plus the rendering



Responsiveness

• user's threshold of pain? 1 second? 2? 
–Android dev documents claim 100 to 200 

milliseconds (0.1 to 0.2 seconds)

• The Android Systems has its own 
threshold of pain
– if the systems determines an application has 

become unresponsive it displays the 
Application Not Responding (ANR) dialog

• ANR occurs if app not responsive to user 
input



Android System

• The Activity Manager and Window 
Manager system services monitor 
applications for responsiveness

• ANR dialog displayed if:

–No response to an input event such as a key 
press or screen touch in 5 seconds

–A BroadcastRecevier doesn't finish 
executing in 10 seconds



Typical Blocking Operations

• complex calculations or rendering
– AI picking next move in game

• looking at data set of unknown size
• parsing a data set
• processing multimedia files
• accessing network resources
• accessing location based services
• access a content provider
• accessing a local database
• accessing a file



The Main Thread

• For applications that consist of an Activity (or 
Activities) it is vital to NOT block the Main 
thread 

• AND on API level 11 and later certain 
operations must be moved off the main UI 
thread
– code that accesses resources over a network

– for example, HTTPrequests on the main UI 
thread result in a 
NetworkOnMainThreadException

– discover StrictMode
http://developer.android.com/reference/android/os/StrictMode.html

http://developer.android.com/reference/android/os/StrictMode.html


The Main Thread

• When application launched system creates a 
thread called main aka the UI thread

• One thread for all UI components

• In charge of dispatching events to UI widgets

– Including drawing them

– When user touches a button on your screen, 
your app’s UI / Main thread dispatches the 
touch event to the widget



Enabling Responsiveness
• move time consuming operations to child threads

– Android AsyncTask
– View.post(Runnable)
– View.postDelayed(Runnable, long)
– Service?

• provide progress bar for worker threads
• big setups -> use a splash screen or render main 

view as quickly as possible and filling in 
information asynchronously

• assume the network is SLOW
• don't access the Android UI toolkit from outside 

the UI thread  
– can result in undefined and unexpected behavior



Asking for Trouble
• Loading image from network may be 

slow and can block the main (UI) thread 
of the application - (Change to TBBT app)



AsyncTask

• Android class to handle simple threading 
for operations that take a few seconds

• Removes some of the complexities of 
Java Thread, Runnables, and Android 
Handler classes

• UI creates an AsyncTask object and calls 
the execute method

• Result published to the UI thread



AsyncTask

• Three Generic Parameters
–data type of Parameter(s) for task

–data type of Progress

–data type of Result

• four steps in carrying out task
–onPreExecute()

–doInBackground(Param… params)

–onProgressUpdate(Progress values)

–onPostExecute(Result result)



Methods

• onPreExecute() runs on UI thread before 
background processing begins

• doInBackground(Param… params) runs on a 
background thread and won't block UI 
thread

• publishProgress(Progress… values) method 
invoked by doInBackground and results in 
call to onProgressUpdate() method on UI 
thread

• onPostExecute(Result result) runs on UI 
thread once doInBackground is done



Downloading with AsyncTask



Random Art with AsyncTask

• Add progress bar and 
button for new art

• create a Bitmap and 
draw to that

• <Integer, Integer, 
Bitmap>



Just One More



Loaders

• Loader classes introduced in API 11

• Help asynchronously load data from 
content provider or network for Activity 
or Fragment

• monitor data source and deliver new 
results when content changes

• multiple classes to work with


