
University Interscholastic League 

 
Computer Science Competition 

 
2004 Regional Programming Set 

 
 
I. General Notes 
 
1. Do the problems in any order you like.  They do not have to be done in order from 1 

to 10. 
 
2. All problems have a value of 6 points. 
 
3. There is no extraneous input. All input is exactly as specified in the problem.  Unless 

specified by the problem, integer inputs will not have leading zeros. Unless 
otherwise specified, your program should read to the end of file. 

 
4. Your program should not print extraneous output. Follow the form exactly as given in 

the problem. 
 
II. Point Values and Names of Problems 
 

      
Number Name  Point Value 
Problem 1 This Is Correct! 6 
Problem 2 Test Scores 6 
Problem 3 List the Primes 6 
Problem 4 Arena 6 
Problem 5 Dice Golf 6 
Problem 6 Matrix 6 
Problem 7 Matrix Reloaded 6 
Problem 8 PacMan 6 
Problem 9 drawkcaBsay iPgay itaLnay Day 6 
Problem 10 Roman Numeral Translator 6 
Total  60 

 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 2 

 
 

This Is Correct! 
 

Program Name: correct.java  Input File: [none] 
 
This problem requires no input.  It also requires no calculations.  Simply output the message, “This Is Correct!” to 
get credit for this problem. 
 
Input 
There is no input. 
 
Output 
Output the title of this problem, “This Is Correct!”.  Include the exclamation point, but don’t include the quotation 
marks. 
 
Example Output To Screen 
This Is Correct! 

Problem 1 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 3 

 
 

Test Scores 
 

Program Name: scores.java  Input File: scores.dat 
 
The input file contains a table with student names in the second column and the score they received on a recent test 
in the first column.  This is a strange way to format the table, so please write a program to reverse the columns so 
that the student names are in the first column and the scores are in the second. 
 
Input 
The input consists of 5 lines, each containing a student’s score (from 0 to 100), a single space, and a student’s first 
name (up to 20 characters). 
 
Output 
Output the same 5 lines with the names and scores reversed. 
 
Example Input File 
99 James 
87 Tim 
0 Marc 
99 Laura 
100 Buddy 
Example Output To Screen 
James 99 
Tim 87 
Marc 0 
Laura 99 
Buddy 100 
 

Problem 2 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 4 

 
 

List the Primes 
 

Program Name: primes.java  Input File: primes.dat 
 
Write a program that will list all the prime numbers in a given range.  Remember, a prime number is one whose only 
integer divisors are itself and one. 
 
Input 
The input will consist of 1 to 20 data sets, one per line.  Each data set will consist of two integers from 2 to 1000 
separated by a single space.  The first integer will always be less than or equal to the second because they indicate a 
range of integers that you will be searching for primes. 
 
Output 
List, in ascending order, the primes that occur in the indicated range (including the endpoints).  If there are no 
primes in the indicated range, print the message, “No primes found!”. 
 
Example Input File 
2 10 
20 20 
100 120 
Example Output To Screen 
2 3 5 7 
No primes found! 
101 103 107 109 113 
 

Problem 3 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 5 

 
 

Arena 
 

Program Name: arena.java  Input File: arena.dat 
 
You are a programmer on a team working on a new RPG called Arena.  You have been assigned to write the battle 
engine of the game.  Write a program that will take in the attacks and blocks of two fighters and determine the victor 
of the battle.   
 
Each battle will consist of 5 rounds, and each fighter starts a battle with 5 health.  During each round, each fighter 
performs an attack and a block at one of three heights: low, medium, or high.  If a fighter attacks a height that is not 
blocked by the other fighter, the attack inflicts damage of 2 health points, otherwise no damage is incurred.  After a 
given round, if either fighter is out of health, the battle is over.  If only one fighter survives a given round, that 
fighter is the winner.  If both fighters die in the same round or both end the match with equal health, the battle ends 
in a draw.  Otherwise, the victor is the fighter with the most remaining health. 
 
Input 
The first line of input will be a single integer indicating the total number of battles (from 1 to 20).  Each battle will 
consist of 4 rows, each containing 5 integers separated by single spaces.  The first and second rows indicate the first 
fighter's attack and block heights respectively, and the third and fourth rows contain similar information for the 
second fighter.  Attack/block heights are encoded as numbers: 1 = high, 2 = medium, 3=low. 
 
Output 
For each battle, print a statement declaring the outcome of the battle.  If there was a victor, output, “<Winner> is the 
victor!” where <Winner> is the fighter who has won the battle (either “Fighter 1” or “Fighter 2”). If the battle is a 
draw, output, “This battle ended in a draw!” 
 
Example Input File 
3 
1 1 1 1 1 
3 3 3 3 3 
2 2 2 2 2 
1 1 1 1 1 
1 3 2 1 2 
2 2 1 1 2 
3 3 3 3 3 
2 2 2 2 2 
1 1 2 3 2 
2 3 2 1 3 
2 3 2 1 3 
1 1 2 3 2 
Example Output To Screen 
Fighter 2 is the victor! 
Fighter 2 is the victor! 
This battle ended in a draw! 

Problem 4 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 6 

 
 

Dice Golf 
 

Program Name: golf.java  Input File: golf.dat 
 
Here's a fun little 2-player dice game you can play to pass the time: The object of the game is to advance your peg to 
the tenth hole or beyond.  Both players start their peg in the first hole, and taking turns rolling the dice, either 
advance or move back their pegs, depending on their roll.  Each of the possible roll's values are: 
 

Roll     Value     Description 
--------------------------------- 
2          +9      Hole in one 
3          -2      Sand trap 
4          +2      On the green 
5          +2      Long drive 
6          +1      On the fairway 
7          -3      Water hazard 
8          +1      On the fairway 
9          -2      In the rough 
10         -2      Slice 
11         +1      Nice chip shot 
12         +1      Nice chip shot 

 
Notes: 
• It is not possible to move back beyond the first hole; any roll that would take a player backwards past the first 

hole takes the player's peg to the first hole instead. 
• Any roll that would take a player to the tenth hole or beyond is a win for that player and the game is considered 

over. 
• Player 1 always rolls first. 
 
Input 
Input to this problem will consist of a (non-empty) series of up to 100 data sets.  Each data set will be formatted 
according to the following description, and there will be no blank lines separating data sets. 
 
Each data set represents a game and has 2 lines: 
 
1. Number of rolls - A single integer, N, the number of rolls in the game.  1 <= N <= 20. 
2. Rolls - A list of N integers delimited by a single space.  Each roll will be 2 <= X <= 12.  Since Player 1 always 

rolls first, the first integer represents Player 1's first roll, the next integer represents Player 2's first roll (if he 
has one), the next integer represents Player 1's second roll (if he has one), and so on.  There may be more rolls 
in the input than are necessary to determine the winner. 

 
Note that the number of data sets is not explicitly given. 
 
Output 
Output will be a single line with the phrase: "Player X wins!", where X is the number of the player who won.  Every 
game will have a winner. 
 
Example Input File 
2 
2 2 
3 
3 5 2 
15 
6 3 8 5 12 4 4 4 4 5 11 4 5 2 7  
Example Output To Screen 
Player 1 wins! 
Player 1 wins! 
Player 2 wins! 

Problem 5 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 7 

 
 

Matrix 
 

Program Name: matrix.java Input File: matrix.dat 
 

 
A magic square is formed by placing the integer from 1 to n in a square matrix where the sums of each row, column, 
and both diagonals are equal.  Each integer from 1 to n must be used exactly once to form a magic square.  In the 
illustration, each row, column, and diagonal sums to 15. 
 
Write a program that will determine if a given matrix represents a magic square. 
 
Input 
The input will consist of up to 20 square matrices of dimension 1x1 to 10x10.  The first line of the input file will 
contain an integer indicating the total number of matrices in the input.  For each matrix, there will be a single line 
containing an integer, n, indicating the size of the matrix (n x n).  The next n lines will contain n integers separated 
by spaces; this represents one of the matrices that is to be tested. 
 
Output 
For each matrix in the input, output a single line.  If the matrix is a magic square, output, “This magic square has 
sum = <sum>.”  Replace <sum> with the number that is the sum of each row, column, and diagonal.  If this matrix 
isn’t a magic square, output, “This isn’t a magic square.” (Don’t forget the periods!) 
 
Example Input File 
3 
3 
8 1 6 
3 5 7 
4 9 2 
4 
1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15 16 
3 
9 2 7 
4 6 8 
5 10 3 
Example Output To Screen 
This magic square has sum = 15. 
This isn’t a magic square. 
This isn’t a magic square. 
 

Problem 6 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 8 

 
 

Matrix Reloaded 
 

Program Name: reloaded.java  Input File: reloaded.dat 
 
Write a program to determine if a matrix of integers with several “blanks” can have those blanks filled in to form a 
magic square.  (For a description of magic squares, refer to the introduction of the problem titled Matrix.)  
 
Input 
The input will consist of up to 20 square matrices of dimension 1x1 to 10x10.  The first line of the input file will 
contain an integer indicating the total number of matrices in the input.  For each matrix, there will be a single line 
containing an integer, n, indicating the size of the matrix (n x n).  The next n lines will contain n integers separated 
by spaces; this represents one of the matrices that is to be tested.  Values of 0 in the matrix represent the blanks that 
need to be filled in.  There will be no more than three values of 0 in any one input matrix. 
 
Output 
For each matrix in the input, output a single line.  If the matrix can be made into a true magic square by filling in the 
blanks in any way, output, “This could be a magic square.” Otherwise, output, “This can’t be a magic square.” 
(Don’t forget the periods!) 
 
Example Input File 
2 
3 
8 1 6 
3 0 7 
4 9 2 
2 
0 2 
3 0 
Example Output To Screen 
This could be a magic square. 
This can’t be a magic square. 

Problem 7 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 9 

 
 

PacMan 
 

Program Name: pacman.java  Input File: pacman.dat 
 
PacMan was popular many years ago, but now he’s old and can’t eat like he used to.  These days he has rheumatism 
and just wants to find the quickest way out of each maze without getting eaten by a ghost.  Luckily, the ghosts are 
older too (and lazy).  They simply stake out key areas in each maze, hoping that PacMan will run into them 
accidentally.  Of course, if PacMan eats a power pellet before hitting a ghost, it’s the ghost that will be eaten.  But 
the ghosts are lazy, and it’s a risk they’re willing to take. 
 
Write a program that determines the least number of moves PacMan must make to reach the exit of each maze 
without being eaten.  Each move is either one unit up, down, left, or right; PacMan doesn’t have the dexterity to 
move diagonally. 
 
Input 
The input will consist of up to 20 square mazes of dimension 4x4 to 10x10.  The first line of the input file will 
contain an integer indicating the total number of mazes in the input.  For each maze, there will be a single line 
containing an integer, n, indicating the size of the maze (n x n).  The next n lines represent the maze and will contain 
n characters each.  Possible characters for each maze are: 
 

‘C’ PacMan’s starting position.  Each maze will contain exactly one. 
‘X’ Exit.  Each maze will contain exactly one, and it is PacMan’s goal to reach it. 
‘#’ Wall.  This is impassible.  The outside of each maze will always be surrounded by walls, but they can 

appear inside the maze as well. 
‘A’ Ghost.  Each maze will contain 0 to 4 ghosts.  They do not move, and PacMan cannot pass them unless he 

eats (passes over) a power pellet first. 
‘@’ Power pellet.  PacMan may pass through these, and if he does then he can pass through ghosts freely for 

the remainder of his moves in this maze.  Each maze will contain 0 to 4 power pellets. 
‘.’ Empty space.  This is a regular passable space.  It has no special significance. 

 
Output 
If PacMan can get to the exit, print the message, “PacMan can escape in <X> moves.” Replace <X> with the 
minimum number of moves required for PacMan to escape.  If PacMan cannot get to the exit, print the message, 
“PacMan should retire.” 
 
Example Input File 
2 
5 
##### 
#C#X# 
#.#.# 
#.A.# 
##### 
7 
####### 
#.....# 
#.###.# 
#..X#.# 
#####A# 
#@...C# 
####### 
Example Output To Screen 
PacMan should retire. 
PacMan can escape in 20 moves. 

Problem 8 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 10 

 
 

drawkcaBsay iPgay itaLnay Day 
 

Program Name: day.java  Input File: day.dat 
 
The citizens of axeTsay have an unusual holiday they like to celebrate called drawkcaBsay iPgay itaLnay Day.  On 
this day, the governor decrees that all citizens will speak in backwards pig latin.  Naturally, this is a difficult task for 
many, and you are called in to write a translation program. 
 
Input 
Input to this problem will consist of a (non-empty) series of up to 100 data sets.  A single data set is a single line 
containing a list of one or more words, delimited by a single space.  Words are made only of alphabetic characters. 
There will be no blank lines separating data sets. 
 
 
Output 
For each data set, there will be exactly one line of output: the list of input words, each translated in backwards pig 
latin.  To translate a word into backwards pig latin, do the following: 
 
 1.  Reverse the order of the letters in the word. 
 2.  Move the first letter of the new word to the end of the word. 
 3.  Add the letters 'a' and 'y' to the end of the word. 
 
Example Input File 
Hello nice to meet you 
This is a funny way to talk 
Example Output To Screen 
lleHoay cineay toay eemtay oyuay 
ihTsay isay aay nnufyay awyay toay latkay 

Problem 9 6 Points 



_________________________________________________________________________________________________________ 
UIL Regional CS Hands-On Problem Set 2004    Page 11 

 
 

Roman Numeral Translator 
 

Program Name: roman.java  Input File: roman.dat 
 
You are to write a program that reads in Roman numerals and determines its integer equivalent. 
 
Roman numerals are based on letters where letters have the following values: 
 

M = 1000 
D = 500 
C = 100 
L = 50 
X = 10 
V = 5 
I = 1 

 
To translate a given number from Roman numerals to its decimal equivalent, the values of the letters are added from 
left to right.  If a letter of lower value is immediately to the left of a letter of higher value, they are treated as a single 
unit with value equal to the value of the higher letter minus the value of the lower letter.  No letter will ever have a 
lower letter immediately to the left and a higher letter immediately to the right or it would be ambiguous which 
letters were subtracted.  For instance, IVX is not valid.  There are other rules governing the use of Roman numerals, 
but they do not have to be known to perform the translation to decimal. 
 
Input 
The input will consist of 1 to 20 data sets.  Each data set will consist of a string of letters that correspond to a Roman 
numeral.  The max Roman numeral value will be MMM (3000), and no input value will contain more than 20 
letters. 
 
Output 
For each data set, an integer corresponding to the Roman numeral will be printed, each on a separate line. 
 
Example Input File 
III 
XIV 
CCLXXXIX 
Example Output To Screen 
3 
14 
289 
 
 

Problem 10 6 Points 


