UIL Computer Science
District Hands On Contest - Pilot
Using the Judging Environment and Judging Guidelines

Adapted from the UIL Hands-On README.

Introduction: These instructions are for using the judging environment for the UIL
Computer Science district hands on contest pilot. You are not required to use the
provided judging environment. It is provided for directors and schools that who are new
to judging a hands on computer programming contest. These instructions assume the
judging environment has already been installed. It is strongly suggested that contest
directors practice using the judging program prior to the day of the contest.
Solutions to all problems including the dry problem are included on the Judging
Disk.

Location of Contestants' Submissions: if not using floppy drives that have a Windows
designation of 'A:', the judging script must be customized by hand! Please edit the
judge.bat filein C: \UIL2007A or C: \UIL2007B to update the FLOPPY variable.
The judge .bat file and the judging environment installation instructions both contain
an explanations of how to set this value.

Overview of the Judging Program. When run, the judging script performs the following
basic actions:

1. Archives the contestant program

2. Copies the contestant program to a clean directory

3. Compiles the contestant program

4. Executes the contestant program

5. Compares the contestant program output to the expected output

During the 5th step, the Windows program CSDiff is invoked to compare the output from
the contestant program to the expected output. In the best case, CSDiff will display a
dialog box with the message:

"Revisions are identical or differ by white space only!"
This means that the output was correct and that no inspection is required by a judge.
If there are disparities between actual and expected output, CSDiff will instead display a
window which highlights the differences between the output produced by the contestant
program and the expected output. This display can be confusing, so I urge all judges to

experiment with the interface during the dry run.

Example of Using the Judging Program:

1. Start the judging program by connecting to the C: \UIL2007A or
C:\UIL2007B directories.

You can do this by running the cmd command from the Windows start menu.

ﬂ PowerPoint ,ij Printers and Faxes

ﬁﬂl Microsaft Office Excel 2003 ‘_‘/I il =) ezt
J) Search

r £ (e,
4
% Eclipse

all Programs D

!] Log OFf ﬁ| Turn OFF Computer

Run E@

Type the name of a program, folder, document, or
Inkernet resource, and Windows will apen it Far yau,

Cpen: crd w

[0] 4][Cancel][Browse. ..

2. This opens a command window.

Microzoft Windows HP [Wersion 5.1.26801
CC» Copyright 1985-2801 Microsoft Corp.

C:xDocuments and Settingssscottm>

3. Move to the directory that contains the judging program by typing the commands
cd C:\UIL2007D* where * is either A or B depending on which set of district

materials you are using.

Microsoft Windows P [Uersion 5.1.26081
CC» Copuright 1985-2001 Microsoft Corp.

C:~Documents and Settingsscottm>cd C:~UILZBB7DA
C:~UIL2887DA >

4. After moving to the correct directory, run the judging program by type the
command judge [problem] where [problem] isthe name of the problem
being judged. In this example I am judging the dry run problem. The dry run
problem explanation is the included as the last page of these instructions. To
judge the dry run problem I type the command judge dryrun.

Microsoft Windows HP [Uersion 5.1.26601
CC>» Copyright 1785-2001 Microsoft Corp.

C:sDocuments and Settingssscottmicd CoUILZAATYDA

CasUIL2ZAA?DA > judge dryruan

5. The judging program will now run through its steps. The first step asks for the
team number. This is to archive the contestants' solution.

Pleaszse enter the team number €i.e.. 12> 1

6. The judging program now asks you to insert the floppy into the drive. (Note, if
reading from some other location the contestants' solution must be placed in that
location.)

Pleaze enter the team number <i.e.. 12>: 1
Pleaze insert submitted floppy into drive...
Prezs any key to continue . .

7. Press any key. The contestant's solution is archived and the judging program asks
you to remove the floppy. (If reading from the hard drive itself there is no action
required at this point.)

Pleaze enter the team numbher (i.e., 12>: 1
Pleasze insert submitted floppy into deive...
Prezz any key to continue . . .

1 file<s?> copied.

1 file<s> copied.
Remove the floppy from the drive...
Prezz any key to continue . . .

8. The judging program will now compile the program. Contestants are to submit the
source code for their programs, the .java file, not the .class file. If the file
compiles the following appears:

Pleaze enter the team numbher (i.e., 123: 1
Pleaze insert submitted floppy into drive...
Prezz any key to continue . . .

1 file<s?> copied.

1 file<s> copied.
Remove the floppy from the drive...

Prezz any key to continue . . .
Compiling program...
Prezzs any key to continue . . .

If the program contained a compile error then you will see an error message and
the judging program will stop. In this case mark "Does Not Compile" on the Run
Sheet and return the attempt. This counts as an incorrect attempt.

Example of a compile error:

Pleasze enter the team number {i.e.. 12>: 1
Pleaze insert submitted floppy into drive...
Press any key to continue . . .

1 file<s?> copied.

1 filefs> copied.
Remove the floppy from the drive...
Press any key to continue . . .
Compiling program...
dryrun . java:b: cannot find symbol
z=ymhol : variahle in
location: class dryrun

Scanner s = new Scanner(dryrunlin -

1 error

Judgement — COMPILE ERROR
Terminating...

Press any key to continue . . .

If the contestant's solution compiles with no errors press and key and the judging
program will run the contestants' solution against the judging data. If the
contestant's solution runs with no runtime errors the judging program will record
the output and you will see the following:

Pleaze enter the team number (i.e.. 12>: 1
Pleaze insert submitted floppy into derive...
Preszsz any key to continue . . .

1 fileds> copied.

1 file<s> copied.
Remove the floppy from the drive...
Preszsz any key to continue
Compiling program...

Prezsz any key to continue
Running program. ..

1 file<s> copied.
Pressz any key to continue

If the contestant's program suffers a run time error you will see an error message
the judging program will stop.

Example of a program that suffers a runtime error.

Pleaze enter the team number (i.e.,. 1222 1
Please insert submitted floppy into drive...
Presz any key to continue . . .
1 file<s> copied.
1 file<s> copied.
Remove the floppy from the drive...
Presz any key to continue . . .
Compiling program...
Presz any key to continue . . .
Running program...
1 file<s> copied.
Exception in thread "main" java.io.FileMotFoundException: C:“dryrun.in
em cannot find the file specified>
at java.io.FilelnputStream.open{Hative Method?
at java.io.FilelnputStream.<init>»*{FilelnputStream. java:186>
at jJava.util.Scanner._<init>{Scanner.java:b2i>)
at dryrun.mainCdryrun. javazbd
Judgement — RUNTIME ERROR
Terminating...
Press any key to continue . . .

If the program contained a runtime error then you will see an error message and
the judging program will stop. In this case mark "Run-time Error" on the Run
Sheet and return the attempt. This counts as an incorrect attempt.

. If the contestant's solution did not suffer a runtime error the judging program will
now compare the output of the contestant's program to the expected output using a
Windows program named CSDiff.

Pleaze enter the team number {i.e.. 12>: 1
Pleaze insert submitted floppy into drive...
Press any key to continue . . .

1 file<s?> copied.

1 file<s> copied.
Remove the floppy from the drive...
Press any key to continue . . .

Compiling program...
Press any key to continue . . .
Running program...

1 file<s> copied.
Prezz any key to continue . . .
Diffing output...

11.

12.

If the contestant's output matches the expected output you will see the following
message box:

| X

\i:) Revizions are identical or differ by white space onlyl

ok |

This indicates the contestant's solution is correct! No inspection of the
contestant's output is required by the judge. Mark accept on the Run Sheet
and the contestants get credit for this problem.

You must click on the OK button of this window to go back to the judging
program.

The judging program has now completed and you can press any key to end the
program. You will now be ready to type in the command to judge the next
problem.

If there are disparities between actual and expected output, CSDiff will instead
display a window which highlights the differences between the output produced
by the contestant program and the expected output. This display can be
confusing, so I urge all judges to experiment with the interface before the day of
the contest.

The judge will have to make the final determination for the submission. Here are
the basic guidelines for judges:

a. Whitespace differences at the ends lines or after the last line of output are
never significant.

b. If the differences do not seem material to the problem solved, err on the
side of accepting the solution. For instance, if a problem is about
performing complex calculations, be flexible with output formatting. On
the other hand, if the problem is all about formatting, then be a stickler.

c. Above all, be consistent in your judging. With this goal in mind, it is
usually best for each problem to have a designated judge or judging team
to help ensure judging consistency for that problem.

13. Here are some examples of differences between contestant and expected output.

In this example of the dry run problem there is an extra space at the end of each
line.

N ‘dryrun.verify’ vs. 'C:\JIL2007DAMasterDataDir\dryrun.out' - ComponentSoftware Diff

File Edik “iew Format Review Help

fase revision. ||:|r_l,lrun.'-.ferif_l,l Difference nao. 1
Compared resvisiomn: |DRUK2mFDﬂRMaﬂmDmaDdemnnm af 1
Sla| o] 1o [v] »v|[oElE 2E]EE =)

I like cabbage.—

I like contests.—

I like judges.—

I like ewverything.—

The red line at the end of each line indicates a difference in the contestant's
output. This would be an example of "Whitespace differences at the end of the
lines and so they are not significant". The contestant's solution is considered
correct!

In this example of the dry run problem the solution capitalizes the word "Like".

N ‘dryrun.verify’ vs. 'C:\UIL2007DAMasterDataDir\dryrun.out’ - ComponentSoftware Diff

File Edik ‘iew Format Feview Help

fiase revision |u:|r_l,lrun.verif_l,l Difference no. 1
Compared revizion; |E:'\L|IL2EIEI?D.-‘-‘-."~I'-1 azterD atalirsdryrun, out of 1
Sl o] wldr[v] »iv|[E EE 2[E=EE =

I Elike cahbage.

I Elike contests.

I Elike judges.

I Elike everything.

The red indicates the contestant's solution has a capital L while the blue indicates
the expected output is a lowercase 1. This would be an example of "If the
differences do not seem material to the problem solved, err on the side of
accepting the solution." The contestant's solution is considered correct!

In this example of the dry run problem the solution prints the required output
twice instead of once.

N ‘dryrun.verify’ vs. ‘C:\IL2007DAMasterDataDir\dryrun.out’ - ComponentSoftware Diff
File Edit W%iew Format FReviews Help

Hase revision: ||:Ir_l,lrun.verif_l,l Difference no. 1
Compared revizion; ||::"-.L|IL2EIEI?D.-’-\."~M azterD atalirdrpron, out of 1
S| =laal| wlr[v] »|w|[E B 2[E=]FE |
I Like eabbage-

I Like eabbage-

I Lilee—merdreaka—

I Like eontestalike nahhage.
I EikeFudgelike contests.

I Elike judges.

I Elike ewverything.

I Lil thime

This is a significant error and the contestant's solution would be rejected.

14. When judging the contest keep in mind "Above all, be consistent in your judging.
With this goal in mind, it is usually best for each problem to have a designated
judge or judging team to help ensure judging consistency for that problem."

15. After the contest the judging program and environment may be removed by simpy
deleting the entire UTL2007D* folder from the judging computers.

16. The dry run problem and the various versions of the dryrun.java program I used in
these example are on the following pages.

Problem #0: Dry Run

Program Name: dryrun.java Input File: dryrun.in
Write a program that reads a list of items from the input file and outputs a message for each.

Input
The first line contains an integer, #, that indicates how many items are in the input file. The next » lines
contain a single word. Each word represents an item that you like.

Output
For each item in the input, output a line stating, “I like <item>.”. For example, if the item were
cabbage, the program would output the line, “I like cabbage.”

Example Input File
4

cabbage
contests

judges
everything

Example Output To Screen
I like cabbage.

I like contests.

I like judges.

I like everything.

Correct solution to the dryrun problem. This code would be in a file named dryrun.java.

import java.util.*;
import java.io.*;

public class dryrun{
public static void main (String[] args) throws IOException({
Scanner s = new Scanner (new File("dryrun.in"));
int num = s.nextInt();
s.nextLine () ;
String like;
for(int 1 = 0; 1 < num; 1i++){
like = s.nextLine () ;
System.out.println("I like " + like + ".");

Attempted solution to the dryrun problem that contains a syntax error. The Scanner is not
created correctly.

import java.util.*;
import java.io.*;

public class dryrun{
public static void main(String[] args) throws IOException{

// the following line has a syntax error
Scanner s = new Scanner (dryrun.in);
int num = s.nextInt();
s.nextLine () ;
String like;
for(int 1 = 0; 1 < num; 1i++){
like = s.nextLine();
System.out.println ("I like " + like + ".");

Attempted solution to the dryrun problem that results in a runtine error. The Scanner
directed to a path hard coded off the C drive instead of being in the current directory.

import java.util.*;
import java.io.*;

public class dryrun{
public static void main(String[] args) throws IOExceptionf{
Scanner s = new Scanner(new File ("C:\\dryrun.in"));
int num = s.nextInt();
s.nextLine () ;
String like;

for(int 1 = 0; 1 < num; 1i++){
like = s.nextLine () ;
System.out.println("I like " + like + ".™);

Attempted solution to the dryrun problem with an extra space at the end of lines. This
solution would be considered correct.

import java.util.*;
import java.io.*;

public class dryrun{
public static void main(String[] args) throws IOExceptionf{
Scanner s = new Scanner(new File("dryrun.in"));
int num = s.nextInt();
s.nextLine () ;
String like;
for(int 1 = 0; 1 < num; 1i++){
like = s.nextLine();

//extra space output at end of line
System.out.println ("I like " + like + ". ");

Attempted solution to the dryrun problem with the word like capatilized. This solution
would be considered correct.

import java.util.*;
import java.io.*;

public class dryrun{
public static void main(String[] args) throws IOExceptionf{
Scanner s = new Scanner(new File ("dryrun.in"));
int num = s.nextInt();
s.nextLine () ;
String like;
for(int 1 = 0; 1 < num; 1i++){
like = s.nextLine();

//like is capitalized
System.out.println("I Like " + like + ".™);

}

Attempted solution to the dryrun problem with two lines of output instead of 1. This
solution would be considered incorrect.

import java.util.*;
import java.io.*;

public class dryrun{
public static void main(String[] args) throws IOExceptionf{
Scanner s = new Scanner(new File ("dryrun.in"));
int num = s.nextInt();
s.nextLine () ;
String like;
for(int 1 = 0; 1 < num; 1i++){
like = s.nextLine();

//two lines of output
System.out.println("I like " + like + ".™);
System.out.println("I like " + like + ".™);

