
slide 1

Vitaly Shmatikov

CS 345

Programming Languages

http://www.cs.utexas.edu/~shmat/courses/cs345/

slide 2

Course Personnel

Instructor: Vitaly Shmatikov
• Office: CSA 1.114
• Office hours: Tuesday, 3:30-4:30pm (after class)
• Open door policy – don’t hesitate to stop by!

TAs: Jeremy Stober and Austin Waters
• Office: PAI 5.38 (TA station #1)
• Office hours: Monday, 2-3pm and Wednesday, 1:30-

2:30pm (Jeremy), TBA (Austin)

Watch the course website
• Assignments, reading materials, lecture notes

slide 3

Course Logistics

Lectures: Tuesday, Thursday 2-3:15pm
Homeworks and programming assignments
• 49% of the grade (7 assignments, 7% each)

Three in-class exams (2 midterms and final)
• 51% of the grade (17% each)

No make-up or substitute exams!
If you are not sure you will be able to take the
exams in class on the assigned dates, do not

take this course!

slide 4

Code of Conduct

• UTCS Code of Conduct will be
strictly enforced

• All assignments are strictly
individual
• Unless explicitly stated otherwise
• “ We were just talkin’ ” is not an

excuse
• No Googling for answers!

• You do not want me to catch you
cheating

slide 5

Late Submission Policy

Each take-home assignment is due in class at
2pm on the due date
You have 3 late days to use any way you want
• You can submit one assignment 3 days late, 3

assignments 1 day late, etc.
• After you use up your days, you get 0 points for each

late assignment
• Partial days are rounded up to the next full day

slide 6

Course Materials

Textbook:
Mitchell. “Concepts in Programming Languages.”
• Attend lectures! Lectures will cover some material that

is not in the textbook – and you will be tested on it!

Harbison, Steele. “C: A Reference Manual.”
(5th edition)
Occasional assigned readings

slide 7

Other Helpful Books

Bison Manual
Dybvig. “The Scheme Programming Language.”
Harper. “Programming in Standard ML.”
All of these are available for free online
• See links on the course website

slide 8

Syllabus

Survey of fundamental concepts underlying
modern programming languages
• Goal: understand paradigms, not vocational training

in any given language
• Examples drawn from ANSI C, C++, Java, Scheme,

ML, JavaScript …

Procedural / imperative
Functional / applicative
Object-oriented
Concurrent

slide 9

Some Course Goals

Language as a framework for problem-solving
• Understand the languages you use, by comparison
• Appreciate history, diversity of ideas in programming
• Be prepared for new methods, paradigms, tools

Critical thought
• Identify properties of language, not syntax or sales pitch

Language and implementation tradeoffs
• Every convenience has its cost

– Recognize the cost of presenting an abstract view of machine
– Understand tradeoffs in programming language design

slide 10

Dijkstra on Language Design

“The use of COBOL cripples the mind; its teaching
should, therefore, be regarded as a criminal offence.”

“APL is a mistake, carried through to perfection.
It is the language of the future for the programming
techniques of the past: it creates a new generation
of coding bums.”

“FORTRAN, 'the infantile disorder’ … is hopelessly inadequate for
whatever computer application you have in mind today: it is now
too clumsy, too risky, and too expensive to use.”

“It is practically impossible to teach good programming to students
that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of
regeneration.”

slide 11

What’s Worth Studying?

Dominant languages and paradigms
• C, C++, Java… JavaScript?
• Imperative and object-oriented languages

Important implementation ideas
Performance challenges
• Concurrency

Design tradeoffs
Concepts that research community is exploring
for new programming languages and tools

slide 12

Languages in Common Use
[F. Labelle]

Based on open-source projects at SourceForge

slide 13

Flon’s Axiom

“There is not now, nor has there ever been,
nor will there ever be,
any programming language in which
it is the least bit difficult to write bad code.”

- Lawrence Flon

slide 14

Latest Trends

Commercial trends
• Increasing use of type-safe languages: Java, C#, …
• Scripting and other languages for Web applications

Teaching trends: Java replacing C
Research and development trends
• Modularity
• Program analysis

– Automated error detection, programming environments,
compilation

• Isolation and security
– Sandboxing, language-based security, …

slide 15

Support for Abstraction

Data
• Programmer-defined types and classes
• Class libraries

Procedural
• Programmer-defined functions
• Standard function libraries

slide 16

Reliability

Program behavior is the same on different
platforms
• E.g., early versions of Fortran

Type errors are detected
• E.g., C vs. ML

Semantic errors are properly trapped
• E.g., C vs. C++

Memory leaks are prevented
• E.g., C vs. Java

slide 17

What Does This C Statement Mean?

*p++ = *q++
increments p increments q

modifies *p

Does this mean… … or … or

*p = *q;
++p;
++q;

*p = *q;
++q;
++p;

tp = p;
++p;
tq = q;
++q;
*tp = *tq;

slide 18

A language is orthogonal if its features are built
upon a small, mutually independent set of
primitive operations.
Fewer exceptional rules = conceptual simplicity
• E.g., restricting types of arguments to a function

Tradeoffs with efficiency

Orthogonality

slide 19

Embedded systems
• Real-time responsiveness (e.g., navigation)
• Failures of early Ada implementations

Web applications
• Responsiveness to users (e.g., Google search)

Corporate database applications
• Efficient search and updating

AI applications
• Modeling human behaviors

Efficient Implementation

	Programming Languages
	Course Personnel
	Course Logistics
	Code of Conduct
	Late Submission Policy
	Course Materials
	Other Helpful Books
	Syllabus
	Some Course Goals
	Dijkstra on Language Design
	What’s Worth Studying?
	Languages in Common Use
	Flon’s Axiom
	Latest Trends
	Support for Abstraction
	Reliability
	What Does This C Statement Mean?
	Orthogonality
	Efficient Implementation

