
slide 1

Vitaly Shmatikov

CS 345

Programming Languages

http://www.cs.utexas.edu/~shmat/courses/cs345/
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Course Personnel

Instructor: Vitaly Shmatikov
• Office: CSA 1.114
• Office hours: Tuesday, 3:30-4:30pm (after class)
• Open door policy – don’t hesitate to stop by!

TAs: Jeremy Stober and Austin Waters
• Office: PAI 5.38 (TA station #1)
• Office hours: Monday, 2-3pm and Wednesday, 1:30-

2:30pm (Jeremy), TBA (Austin)

Watch the course website
• Assignments, reading materials, lecture notes
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Course Logistics

Lectures: Tuesday, Thursday 2-3:15pm 
Homeworks and programming assignments
• 49% of the grade (7 assignments, 7% each)

Three in-class exams (2 midterms and final)
• 51% of the grade (17% each)

No make-up or substitute exams!
If you are not sure you will be able to take the 
exams in class on the assigned dates, do not 

take this course!
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Code of Conduct

• UTCS Code of Conduct will be 
strictly enforced

• All assignments are strictly 
individual
• Unless explicitly stated otherwise
• “ We were just talkin’ ” is not an 

excuse
• No Googling for answers!

• You do not want me to catch you 
cheating
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Late Submission Policy

Each take-home assignment is due in class at 
2pm on the due date
You have 3 late days to use any way you want
• You can submit one assignment 3 days late, 3 

assignments 1 day late, etc.
• After you use up your days, you get 0 points for each 

late assignment
• Partial days are rounded up to the next full day
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Course Materials

Textbook: 
Mitchell. “Concepts in Programming Languages.”
• Attend lectures!  Lectures will cover some material that 

is not in the textbook – and you will be tested on it!

Harbison, Steele. “C: A Reference Manual.”
(5th edition)
Occasional assigned readings
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Other Helpful Books

Bison Manual
Dybvig. “The Scheme Programming Language.”
Harper. “Programming in Standard ML.”
All of these are available for free online
• See links on the course website



slide 8

Syllabus

Survey of fundamental concepts underlying 
modern programming languages
• Goal: understand paradigms, not vocational training 

in any given language
• Examples drawn from ANSI C, C++, Java, Scheme, 

ML, JavaScript …

Procedural / imperative
Functional / applicative
Object-oriented
Concurrent
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Some Course Goals

Language as a framework for problem-solving
• Understand the languages you use, by comparison
• Appreciate history, diversity of ideas in programming
• Be prepared for new methods, paradigms, tools

Critical thought
• Identify properties of language, not syntax or sales pitch

Language and implementation tradeoffs
• Every convenience has its cost

– Recognize the cost of presenting an abstract view of machine
– Understand tradeoffs in programming language design
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Dijkstra on Language Design  

“The use of COBOL cripples the mind; its teaching 
should, therefore, be regarded as a criminal offence.” 

“APL is a mistake, carried through to perfection. 
It is the language of the future for the programming 
techniques of the past: it creates a new generation 
of coding bums.” 

“FORTRAN, 'the infantile disorder’ … is hopelessly inadequate for
whatever computer application you have in mind today: it is now
too clumsy, too risky, and too expensive to use.” 

“It is practically impossible to teach good programming to students
that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of
regeneration.” 
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What’s Worth Studying?  

Dominant languages and paradigms
• C, C++, Java… JavaScript? 
• Imperative and object-oriented languages

Important implementation ideas
Performance challenges
• Concurrency

Design tradeoffs
Concepts that research community is exploring 
for new programming languages and tools
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Languages in Common Use
[F. Labelle]

Based on open-source projects at SourceForge
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Flon’s Axiom

“There is not now, nor has there ever been, 
nor will there ever be, 
any programming language in which 
it is the least bit difficult to write bad code.”

- Lawrence Flon 
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Latest Trends

Commercial trends
• Increasing use of type-safe languages: Java, C#, … 
• Scripting and other languages for Web applications

Teaching trends: Java replacing C
Research and development trends
• Modularity
• Program analysis

– Automated error detection, programming environments, 
compilation

• Isolation and security
– Sandboxing, language-based security,  …
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Support for Abstraction

Data
• Programmer-defined types and classes
• Class libraries

Procedural
• Programmer-defined functions
• Standard function libraries
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Reliability

Program behavior is the same on different 
platforms
• E.g., early versions of Fortran

Type errors are detected
• E.g., C vs. ML

Semantic errors are properly trapped
• E.g., C vs. C++

Memory leaks are prevented
• E.g., C vs. Java
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What Does This C Statement Mean?  

*p++ = *q++
increments p increments q

modifies *p

Does this mean… … or … or

*p = *q;
++p;
++q;

*p = *q;
++q;
++p;

tp = p;
++p;
tq = q;
++q;
*tp = *tq;
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A language is orthogonal if its features are built 
upon a small, mutually independent set of 
primitive operations.
Fewer exceptional rules = conceptual simplicity
• E.g., restricting types of arguments to a function

Tradeoffs with efficiency

Orthogonality



slide 19

Embedded systems
• Real-time responsiveness (e.g., navigation)
• Failures of early Ada implementations

Web applications
• Responsiveness to users (e.g., Google search)

Corporate database applications
• Efficient search and updating

AI applications
• Modeling human behaviors

Efficient Implementation
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