
slide 1

Vitaly Shmatikov

CS 345

Lexical and Syntactic Analysis

slide 2

Reading Assignment

Mitchell, Chapters 4.1
C Reference Manual, Chapters 2 and 7

slide 3

Syntax

Syntax of a programming language is a precise
description of all grammatically correct programs
• Precise formal syntax was first used in ALGOL 60

Lexical syntax
• Basic symbols (names, values, operators, etc.)

Concrete syntax
• Rules for writing expressions, statements, programs

Abstract syntax
• Internal representation of expressions and statements,

capturing their “meaning” (i.e., semantics)

slide 4

Grammars

A meta-language is a language used to define
other languages
A grammar is a meta-language used to define
the syntax of a language. It consists of:
• Finite set of terminal symbols
• Finite set of non-terminal symbols
• Finite set of production rules
• Start symbol
• Language = (possibly infinite) set of all sequences of

symbols that can be derived by applying production
rules starting from the start symbol

Backus-Naur
Form (BNF)

slide 5

Example: Decimal Numbers

Grammar for unsigned decimal integers
• Terminal symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
• Non-terminal symbols: Digit, Integer
• Production rules:

– Integer → Digit | Integer Digit
– Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• Start symbol: Integer

Can derive any unsigned integer using this
grammar
• Language = set of all unsigned decimal integers

Shorthand for
Integer → Digit
Integer → Integer Digit

slide 6

Integer ⇒ Integer Digit
⇒ Integer 2
⇒ Integer Digit 2
⇒ Integer 5 2
⇒ Digit 5 2
⇒ 3 5 2

Rightmost derivation

At each step, the rightmost
non-terminal is replaced

Derivation of 352 as an Integer
Production rules:
Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

slide 7

Leftmost Derivation

Integer ⇒ Integer Digit
⇒ Integer Digit Digit
⇒ Digit Digit Digit
⇒ 3 Digit Digit
⇒ 3 5 Digit
⇒ 3 5 2

At each step, the leftmost
non-terminal is replaced

Production rules:
Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

slide 8

Chomsky Hierarchy

Regular grammars
• Regular expressions, finite-state automata
• Used to define lexical structure of the language

Context-free grammars
• Non-deterministic pushdown automata
• Used to define concrete syntax of the language

Context-sensitive grammars
Unrestricted grammars
• Recursively enumerable languages, Turing machines

slide 9

Regular Grammars

Left regular grammar
• All production rules have the form

A → ω or A → Bω
– Here A, B are non-terminal symbols, ω is a terminal symbol

Right regular grammar
• A → ω or A → ωB

Example: grammar of decimal integers
Not a regular language: {an bn | n ≥ 1 } (why?)
What about this: “any sequence of integers
where (is eventually followed by)”?

slide 10

Lexical Analysis

Source code = long string of ASCII characters
Lexical analyzer splits it into tokens
• Token = sequence of characters (symbolic name)

representing a single terminal symbol
Identifiers: myVariable …
Literals: 123 5.67 true …
Keywords: char sizeof …
Operators: + - * / …
Punctuation: ; , } { …
Discards whitespace and comments

slide 11

Regular Expressions

x character x
\x escaped character, e.g., \n
{ name } reference to a name
M | N M or N
M N M followed by N
M* 0 or more occurrences of M
M+ 1 or more occurrences of M
[x1 … xn] One of x1 … xn
• Example: [aeiou] – vowels, [0-9] - digits

slide 12

Examples of Tokens in C

Lexical analyzer usually represents each token by
a unique integer code
• “+” { return(PLUS); } // PLUS = 401
• “-” { return(MINUS); } // MINUS = 402
• “*” { return(MULT); } // MULT = 403
• “/” { return(DIV); } // DIV = 404

Some tokens require regular expressions
• [a-zA-Z_][a-zA-Z0-9_]* { return (ID); } // identifier
• [1-9][0-9]* { return(DECIMALINT); }
• 0[0-7]* { return(OCTALINT); }
• (0x|0X)[0-9a-fA-F]+ { return(HEXINT); }

slide 13

Reserved Keywords in C

auto, break, case, char, const, continue, default,
do, double, else, enum, extern, float, for, goto, if,
int, long, register, return, short, signed, sizeof,
static, struct, switch, typedef, union, unsigned,
void, volatile, wchar_t, while
C++ added a bunch: bool, catch, class,
dynamic_cast, inline, private, protected, public,
static_cast, template, this, virtual and others
Each keyword is mapped to its own token

slide 14

Automatic Scanner Generation

Lexer or scanner recognizes and separates
lexical tokens
• Parser usually calls lexer when it’s ready to process

the next symbol (lexer remembers where it left off)

Scanner code usually generated automatically
• Input: lexical definition (e.g., regular expressions)
• Output: code implementing the scanner

– Typically, this is a deterministic finite automaton (DFA)

• Examples: Lex, Flex (C and C++), JLex (Java)

slide 15

Finite State Automata

Set of states
• Usually represented as graph nodes

Input alphabet + unique “end of program” symbol
State transition function
• Usually represented as directed graph edges (arcs)
• Automaton is deterministic if, for each state and each

input symbol, there is at most one outgoing arc from
the state labeled with the input symbol

Unique start state
One or more final (accepting) states

slide 16

DFA for C Identifiers

slide 17

Traversing a DFA

Configuration = state + remaining input
Move = traversing the arc exiting the state that
corresponds to the leftmost input symbol,
thereby consuming it
If no such arc, then…
• If no input and state is final, then accept
• Otherwise, error

Input is accepted if, starting with the start state,
the automaton consumes all the input and halts
in a final state

slide 18

Context-Free Grammars

Used to describe concrete syntax
• Typically using BNF notation

Production rules have the form A → ω
• A is a non-terminal symbol, ω is a string of terminal and

non-terminal symbols

Parse tree = graphical representation of derivation
• Each internal node = LHS of a production rule

– Internal node must be a non-terminal symbol (why?)

• Children nodes = RHS of this production rule
• Each leaf node = terminal symbol (token) or “empty”

slide 19

Syntactic Correctness

Lexical analyzer produces a stream of tokens
Parser (syntactic analyzer) verifies that this token
stream is syntactically correct by constructing a
valid parse tree for the entire program
• Unique parse tree for each language construct
• Program = collection of parse trees rooted at the top by

a special start symbol

Parser can be built automatically from the BNF
description of the language’s CFG
• Example tools: yacc, Bison

slide 20

CFG For Floating Point Numbers

::= stands for production rule; <…> are non-terminals;
| represents alternatives for the right-hand side of a production rule

Sample parse tree:

slide 21

CFG For Balanced Parentheses

Sample derivation: <balanced> ⇒ (<balanced>)
⇒ ((<balanced>))
⇒ ((<empty>))
⇒ (())

Could we write this grammar using
regular expressions or DFA? Why?

slide 22

CFG For Decimal Numbers (Redux)

Sample
top-down leftmost
derivation:

<num> ⇒ <digit> <num>
⇒ 7 <num>
⇒ 7 <digit> <num>
⇒ 7 8 <num>
⇒ 7 8 <digit>
⇒ 7 8 9

This grammar is right-recursive

slide 23

Recursive Descent Parsing

Top-down, left-to-right
construction of
the parse tree

slide 24

⇒ 7 8 <digit>
⇒ 7 8 <num>
⇒ 7 <digit> <num>
⇒ 7 <num>
⇒ <digit> <num>
⇒ <num>

Shift-Reduce Parsing

Idea: build the parse tree bottom-up
• Lexer supplies a token, parser find production rule with

matching right-hand side (i.e., run rules in reverse)
• If start symbol is reached, parsing is successful

Production rules:
Num → Digit | Digit Num
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

789
reduce

shift

reduce

shift

reduce

slide 25

Concrete vs. Abstract Syntax

Different languages have different concrete
syntax for representing expressions, but
expressions with common meaning have the
same abstract syntax
• C: a+b*c Forth: bc*a+ (reverse Polish notation)

This expression tree represents the
abstract “meaning” of expression

• Assumes certain operator precedence (why?)
• Not the same as parse tree (why?)
• Does the value depend on traversal order?

slide 26

Expression Notation

Inorder traversal (3+4)*5=35 3+(4*5)=23

When constructing expression trees, we want inorder traversal to produce
correct arithmetic result based on operator precedence and associativity

Postorder traversal 3 4 + 5 * =35 3 4 5 * + =23
Easily evaluated using operand stack (example: Forth)
• Leaf node: push operand value on the stack
• Non-leaf binary or unary operator: pop two (resp. one) values from stack,

apply operator, push result back on the stack
• End of evaluation: print top of the stack

slide 27

Mixed Expression Notation

unary prefix operators

Prefix:

Need to indicate arity to distinguish
between unary and binary minus

slide 28

Postfix, Prefix, Mixfix in Java and C

Increment and decrement: x++, --y
x = ++x + x++ legal syntax, undefined semantics!

Ternary conditional
(conditional-expr) ? (then-expr) : (else-expr);

• Example:
int min(int a, int b) { return (a<b) ? a : b; }

• This is an expression, NOT an if-then-else command
• What is the type of this expression?

slide 29

Expression Compilation Example

lexical analyzer

tokenized expression:

parser

implicit type conversion (why?)

slide 30

Syntactic Ambiguity

How to parse a+b*c using this grammar?

Both parse trees are
syntactically valid

Only this tree is semantically correct
(operator precedence and associativity
are semantic, not syntactic rules)

This grammar is
ambiguous

Problem: this tree is
syntactically correct, but
semantically incorrect

slide 31

Removing Ambiguity

Define a distinct non-terminal symbol for each
operator precedence level
Define RHS of production rule to enforce proper
associativity
Extra non-terminal for smallest subexpressions

Not always possible to
remove ambiguity this way!

slide 32

This Grammar Is Unambiguous

slide 33

Left- and Right-Recursive Grammars

Leftmost non-terminal on the RHS of
production is the same as the LHS

Right-recursive grammar

Can you think of any
operators that are
right-associative?

slide 34

Yacc Expression Grammar

Yacc: automatic parser generator
Explicit specification of operator precedence and
associativity (don’t need to rewrite grammar)

slide 35

“Dangling Else” Ambiguity

if (x < 0)
if (y < 0) y = y - 1;
else y = 0;

With which if does
this else associate?

(())

Classic example of a
shift-reduce conflict

slide 36

Solving the Dangling Else Ambiguity

Algol 60, C, C++: associate each else with
closest if; use { … } or begin … end to override
• Does this prefer “shift” to “reduce” or vice versa?

Algol 68, Modula, Ada: use an explicit delimiter
to end every conditional (e.g., if … endif)
Java: rewrite the grammar and restrict what can
appear inside a nested if statement
• IfThenStmt → if (Expr) Stmt
• IfThenElseStmt → if (Expr) StmtNoShortIf else Stmt

– The category StmtNoShortIf includes all except IfThenStmt

slide 37

Shift-Reduce Conflicts in Yacc

This grammar is ambiguous!
By default, Yacc shifts (i.e., pushes the token onto the
parser’s stack) and generates warning
• Equivalent to associating “else” with closest “if” (this is correct

semantics!)

slide 38

Avoiding Yacc Warning

Forces parser to shift ELSE onto the stack because it has
higher precedence than dummy LOWER_THAN_ELSE token

slide 39

More Powerful Grammars

Context-sensitive: production rules have the form
αAβ → αωβ
• A is a non-terminal symbol, α,β,ω are strings of terminal

and non-terminal symbols
• Deciding whether a string belongs to a language

generated by a context-sensitive grammar is PSPACE-
complete

• Emptiness of a language is undecidable
– What does this mean?

Unrestricted: equivalent to Turing machine

	Lexical and Syntactic Analysis
	Reading Assignment
	Syntax
	Grammars
	Example: Decimal Numbers
	Derivation of 352 as an Integer
	Leftmost Derivation
	Chomsky Hierarchy
	Regular Grammars
	Lexical Analysis
	Regular Expressions
	Examples of Tokens in C
	Reserved Keywords in C
	Automatic Scanner Generation
	Finite State Automata
	DFA for C Identifiers
	Traversing a DFA
	Context-Free Grammars
	Syntactic Correctness
	CFG For Floating Point Numbers
	CFG For Balanced Parentheses
	CFG For Decimal Numbers (Redux)
	Recursive Descent Parsing
	Shift-Reduce Parsing
	Concrete vs. Abstract Syntax
	Expression Notation
	Mixed Expression Notation
	Postfix, Prefix, Mixfix in Java and C
	Expression Compilation Example
	Syntactic Ambiguity
	Removing Ambiguity
	This Grammar Is Unambiguous
	Left- and Right-Recursive Grammars
	Yacc Expression Grammar
	“Dangling Else” Ambiguity
	Solving the Dangling Else Ambiguity
	Shift-Reduce Conflicts in Yacc
	Avoiding Yacc Warning
	More Powerful Grammars

