
slide 1

Vitaly Shmatikov

CS 345

Imperative Programming

slide 2

Reading Assignment

Mitchell, Chapter 5.1-2
C Reference Manual, Chapter 8

slide 3

Imperative Programming

Oldest and most popular paradigm
• Fortran, Algol, C, Java …

Mirrors computer architecture
• In a von Neumann machine, memory holds instructions

and data

Key operation: assignment
• Side effect: updating state (i.e., memory) of the

machine

Control-flow statements
• Conditional and unconditional (GO TO) branches, loops

slide 4

Elements of Imperative Programs

Data type definitions
Variable declarations (usually typed)
Expressions and assignment statements
Control flow statements (usually structured)
Lexical scopes and blocks
• Goal: provide locality of reference

Declarations and definitions of procedures and
functions (i.e., parameterized blocks)

slide 5

Variable Declarations

Typed variable declarations restrict the values that
a variable may assume during program execution
• Built-in types (int, char …) or user-defined
• Initialization: Java integers to 0. What about C?

Variable size
• How much space needed to hold values of this variable?

– C on a 32-bit machine: sizeof(char) = 1 byte, sizeof(short) = 2
bytes, sizeof(int) = 4 bytes, sizeof(char*) = 4 bytes (why?)

– What about this user-defined datatype:

slide 6

Variables: Locations and Values

When a variable is declared, it is bound to some
memory location and becomes its identifier
• Location could be in global, heap, or stack storage

l-value: memory location (address)
r-value: value stored at the memory location
identified by l-value
Assignment: A (target) = B (expression)
• Destructive update: overwrites the memory location

identified by A with a value of expression B
– What if a variable appears on both sides of assignment?

slide 7

Copy vs. Reference Semantics

Copy semantics: expression is evaluated to a
value, which is copied to the target
• Used by imperative languages

Reference semantics: expression is evaluated to
an object, whose pointer is copied to the target
• Used by object-oriented languages

slide 8

Variables and Assignment

On the RHS of an assignment, use the variable’s
r-value; on the LHS, use its l-value
• Example: x = x+1
• Meaning: “get r-value of x, add 1, store the result into

the l-value of x”

An expression that does not have an l-value
cannot appear on the LHS of an assignment
• What expressions don’t have l-values?

– Examples: 1=x+1, ++x++ (why?)
– What about a[1] = x+1, where a is an array? Why?

slide 9

l-Values and r-Values (1)

Any expression or assignment statement in an
imperative language can be understood in terms
of l-values and r-values of variables involved
• In C, also helps with complex pointer dereferencing

and pointer arithmetic

Literal constants
• Have r-values, but not l-values

Variables
• Have both r-values and l-values
• Example: x=x*y means “compute rval(x)*rval(y) and

store it in lval(x)”

slide 10

l-Values and r-Values (2)

Pointer variables
• Their r-values are l-values of another variable

– Intuition: the value of a pointer is an address

Overriding r-value and l-value computation in C
• &x always returns l-value of x
• *p always return r-value of p

– If p is a pointer, this is an l-value of another variable

What are the values of
p and x at this point?

slide 11

l-Values and r-Values (3)

Declared functions and procedures
• Have l-values, but no r-values

slide 12

Turing-Complete Mini-Language

Integer variables, values, operations
Assignment
If
Go To

slide 13

Structured Control Flow

Control flow in imperative languages is most often
designed to be sequential
• Instructions executed in order they are written
• Some also support concurrent execution (Java)

Program is structured if control flow is evident
from syntactic (static) structure of program text
• Big idea: programmers can reason about dynamic

execution of a program by just analyzing program text
• Eliminate complexity by creating language constructs

for common control-flow “patterns”
– Iteration, selection, procedures/functions

slide 14

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30 X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
…

Similar structure may occur in assembly code

slide 15

Historical Debate

Dijkstra, “GO TO Statement Considered Harmful”
• Letter to Editor, Comm. ACM, March 1968
• Linked from the course website

Knuth, “Structured Prog. with Go To Statements”
• You can use goto, but do so in structured way …

Continued discussion
• Welch, “GOTO (Considered Harmful)n, n is Odd”

General questions
• Do syntactic rules force good programming style?
• Can they help?

slide 16

Modern Style

Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case …

Group code in logical blocks
Avoid explicit jumps (except function return)
Cannot jump into the middle of a block or
function body

slide 17

Iteration

Definite

Indefinite
• Termination depends on a dynamically computed value

How do we know statically (i.e., before
we run the program) that the loop will
terminate, i.e., that n will eventually
become less than or equal to 0?

slide 18

Iteration Constructs in C

• while (condition) stmt;
while (condition) { stmt; stmt; …; }

• do stmt while (condition);
do { stmt; stmt; …; } while (condition);

• for (<initialize>; <test>; <step>) stmt;
– Restricted form of “while” loop – same as

<initialize>; while (<test>) { stmt; <step> }

for (<initialize>; <test>; <step>) { stmt; stmt; …; }

slide 19

“Breaking Out” Of A Loop in C

slide 20

Forced Loop Re-Entry in C

slide 21

Block-Structured Languages

Nested blocks with local variables

{ int x = 2;
{ int y = 3;

x = y+2;
}

}

• Storage management
– Enter block: allocate space for variables
– Exit block: some or all space may be deallocated

new variables declared in nested blocks

inner
block

outer
block local variable

global variable

slide 22

Blocks in Common Languages

Examples
• C, JavaScript * { … }
• Algol begin … end
• ML let … in … end

Two forms of blocks
• Inline blocks
• Blocks associated with functions or procedures

– We’ll talk about these later

* JavaScript functions provides blocks

slide 23

Simplified Machine Model

Registers

Environment
pointer

Program
counter

DataCode

Heap

Stack

slide 24

Memory Management

Registers, Code segment, Program counter
• Ignore registers (for our purposes) and details of

instruction set

Data segment
• Stack contains data related to block entry/exit
• Heap contains data of varying lifetime
• Environment pointer points to current stack position

– Block entry: add new activation record to stack
– Block exit: remove most recent activation record

slide 25

Scope and Lifetime

Scope
• Region of program text where declaration is visible

Lifetime
• Period of time when location is allocated to program

• Inner declaration of x hides outer one
(“hole in scope”)

• Lifetime of outer x includes time when
inner block is executed

• Lifetime ≠ scope

{ int x = … ;
{ int y = … ;

{ int x = … ;
….
};

};
};

slide 26

Inline Blocks

Activation record
• Data structure stored on run-time stack
• Contains space for local variables

May need space for variables and intermediate results like (x+y), (x-y)

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

slide 27

Activation Record For Inline Block

Control link
• Pointer to previous record

on stack

Push record on stack
• Set new control link to

point to old env ptr
• Set env ptr to new record

Pop record off stack
• Follow control link of

current record to reset
environment pointer

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment
pointer

In practice, can be optimized away

slide 28

Example

{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

Control link

x

y

0

1

x+y

x-y

Environment
pointer

1

-1

Control link

z -1

	Imperative Programming
	Reading Assignment
	Imperative Programming
	Elements of Imperative Programs
	Variable Declarations
	Variables: Locations and Values
	Copy vs. Reference Semantics
	Variables and Assignment
	l-Values and r-Values (1)
	l-Values and r-Values (2)
	l-Values and r-Values (3)
	Turing-Complete Mini-Language
	Structured Control Flow
	Fortran Control Structure
	Historical Debate
	Modern Style
	Iteration
	Iteration Constructs in C
	“Breaking Out” Of A Loop in C
	Forced Loop Re-Entry in C
	Block-Structured Languages
	Blocks in Common Languages
	Simplified Machine Model
	Memory Management
	Scope and Lifetime
	Inline Blocks
	Activation Record For Inline Block
	Example

