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Reading Assignment

Mitchell, Chapter 5.1-2
C Reference Manual, Chapter 8
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Imperative Programming

Oldest and most popular paradigm
• Fortran, Algol, C, Java …

Mirrors computer architecture
• In a von Neumann machine, memory holds instructions 

and data 

Key operation: assignment
• Side effect: updating state (i.e., memory) of the 

machine

Control-flow statements
• Conditional and unconditional (GO TO) branches, loops
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Elements of Imperative Programs

Data type definitions
Variable declarations (usually typed)
Expressions and assignment statements
Control flow statements (usually structured)
Lexical scopes and blocks
• Goal: provide locality of reference

Declarations and definitions of procedures and 
functions (i.e., parameterized blocks)
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Variable Declarations

Typed variable declarations restrict the values that 
a variable may assume during program execution
• Built-in types (int, char …) or user-defined
• Initialization: Java integers to 0.  What about C?

Variable size
• How much space needed to hold values of this variable?

– C on a 32-bit machine: sizeof(char) = 1 byte, sizeof(short) = 2 
bytes, sizeof(int) = 4 bytes, sizeof(char*) = 4 bytes (why?)

– What about this user-defined datatype:
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Variables: Locations and Values

When a variable is declared, it is bound to some 
memory location and becomes its identifier
• Location could be in global, heap, or stack storage

l-value: memory location (address)
r-value: value stored at the memory location 
identified by l-value
Assignment: A (target) = B (expression)
• Destructive update: overwrites the memory location 

identified by A with a value of expression B
– What if a variable appears on both sides of assignment? 
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Copy vs. Reference Semantics

Copy semantics: expression is evaluated to a 
value, which is copied to the target
• Used by imperative languages

Reference semantics: expression is evaluated to 
an object, whose pointer is copied to the target
• Used by object-oriented languages
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Variables and Assignment

On the RHS of an assignment, use the variable’s 
r-value; on the LHS, use its l-value
• Example: x = x+1
• Meaning: “get r-value of x, add 1, store the result into 

the l-value of x”

An expression that does not have an l-value 
cannot appear on the LHS of an assignment
• What expressions don’t have l-values?

– Examples: 1=x+1, ++x++ (why?)
– What about a[1] = x+1, where a is an array?  Why?
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l-Values and r-Values (1)

Any expression or assignment statement in an 
imperative language can be understood in terms 
of l-values and r-values of variables involved
• In C, also helps with complex pointer dereferencing 

and pointer arithmetic

Literal constants
• Have r-values, but not l-values

Variables
• Have both r-values and l-values
• Example: x=x*y means “compute rval(x)*rval(y) and 

store it in lval(x)”
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l-Values and r-Values (2)

Pointer variables
• Their r-values are l-values of another variable

– Intuition: the value of a pointer is an address

Overriding r-value and l-value computation in C
• &x always returns l-value of x
• *p always return r-value of p

– If p is a pointer, this is an l-value of another variable

What are the values of 
p and x at this point?
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l-Values and r-Values (3)

Declared functions and procedures
• Have l-values, but no r-values
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Turing-Complete Mini-Language

Integer variables, values, operations
Assignment
If
Go To
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Structured Control Flow

Control flow in imperative languages is most often 
designed to be sequential
• Instructions executed in order they are written
• Some also support concurrent execution (Java)

Program is structured if control flow is evident 
from syntactic (static) structure of program text
• Big idea: programmers can reason about dynamic 

execution of a program by just analyzing program text
• Eliminate complexity by creating language constructs 

for common control-flow “patterns”
– Iteration, selection, procedures/functions
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Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30  X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
… 

Similar structure may occur in assembly code
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Historical Debate

Dijkstra, “GO TO Statement Considered Harmful”
• Letter to Editor, Comm. ACM, March 1968
• Linked from the course website

Knuth, “Structured Prog. with Go To Statements”
• You can use goto, but do so in structured way …

Continued discussion
• Welch, “GOTO (Considered Harmful)n, n is Odd”

General questions
• Do syntactic rules force good programming style?
• Can they help?
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Modern Style

Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case … 

Group code in logical blocks 
Avoid explicit jumps (except function return)
Cannot jump into the middle of a block or 
function body
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Iteration

Definite

Indefinite
• Termination depends on a dynamically computed value

How do we know statically (i.e., before 
we run the program) that the loop will 
terminate, i.e., that n will eventually 
become less than or equal to 0?
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Iteration Constructs in C

• while (condition) stmt;
while (condition) { stmt; stmt; …; }

• do stmt while (condition);
do { stmt; stmt; …; } while (condition);

• for (<initialize>; <test>; <step>) stmt;
– Restricted form of “while” loop – same as

<initialize>; while (<test>) { stmt; <step> }

for (<initialize>; <test>; <step>) { stmt; stmt; …; } 
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“Breaking Out” Of A Loop in C
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Forced Loop Re-Entry in C
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Block-Structured Languages

Nested blocks with local variables

{ int x = 2;
{ int y = 3;

x = y+2;
}

}

• Storage management
– Enter block: allocate space for variables
– Exit block: some or all space may be deallocated

new variables declared in nested blocks

inner 
block

outer 
block local variable

global variable
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Blocks in Common Languages

Examples
• C, JavaScript * { … }
• Algol                 begin … end
• ML                    let … in … end

Two forms of blocks
• Inline blocks 
• Blocks associated with functions or procedures

– We’ll talk about these later

* JavaScript functions provides blocks
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Simplified Machine Model

Registers

Environment 
pointer

Program 
counter

DataCode

Heap

Stack
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Memory Management

Registers, Code segment, Program counter
• Ignore registers (for our purposes) and details of 

instruction set

Data segment
• Stack contains data related to block entry/exit
• Heap contains data of varying lifetime
• Environment pointer points to current stack position

– Block entry: add new activation record to stack
– Block exit: remove most recent activation record
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Scope and Lifetime

Scope
• Region of program text where declaration is visible

Lifetime
• Period of time when location is allocated to program

• Inner declaration of x hides outer one
(“hole in scope”)

• Lifetime of outer x includes time when 
inner block is executed

• Lifetime ≠ scope

{ int x = … ;  
{  int y = … ; 

{  int x = … ;
….
};

};
};
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Inline Blocks

Activation record
• Data structure stored on run-time stack
• Contains space for local variables

May need space for variables and intermediate results like (x+y), (x-y) 

{ int x=0;  

int y=x+1; 

{  int z=(x+y)*(x-y);

};

};

Push record with space for x, y 
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block
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Activation Record For Inline Block

Control link
• Pointer to previous record 

on stack

Push record on stack
• Set new control link to 

point to old env ptr
• Set env ptr to new record

Pop record off stack
• Follow control link of 

current record to reset 
environment pointer

Control link

Local variables

Intermediate results

Control link

Local variables

Intermediate results

Environment 
pointer

In practice, can be optimized away
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Example

{ int x=0;  

int y=x+1; 

{  int z=(x+y)*(x-y);

};

};

Push record with space for x, y 
Set values of x, y

Push record for inner block
Set value of z
Pop record for inner block

Pop record for outer block

Control link

x

y

0

1

x+y

x-y

Environment 
pointer

1

-1

Control link

z -1
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