CS 345

Imperative Programmin

O R i o e B e W I i o T B e W T L R P i R T A I o o T e W T T P P i) s R T

Vitaly Shmatikov

slide 1

Reading Assignment

S I g o T T T BN L P 0) T B e W S T Y IR i o < T

i

@ Mitchell, Chapter 5.1-2
€ C Reference Manual, Chapter 8

slide 2

Imperative Programming

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

€ Oldest and most popular paradigm
e Fortran, Algol, C, Java ...

€ Mirrors computer architecture

e In a von Neumann machine, memory holds instructions
and data

€ Key operation: assignment

e Side effect: updating state (i.e., memory) of the
machine

@ Control-flow statements
e Conditional and unconditional (GO TO) branches, loops

slide 3

Elements of Imperative Programs
€ Data type definitions

@ Variable declarations (usually typed)

@® Expressions and assignment statements

@ Control flow statements (usually structured)

@ Lexical scopes and blocks
e Goal: provide locality of reference

@ Declarations and definitions of procedures and
functions (i.e., parameterized blocks)

slide 4

Variable Declarations

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

€ Typed variable declarations restrict the values that
a variable may assume during program execution
e Built-in types (int, char ...) or user-defined
e |nitialization: Java integers to 0. What about C?

@® Variable size

e How much space needed to hold values of this variable?

— C on a 32-bit machine: sizeof(char) = 1 byte, sizeof(short) = 2
bytes, sizeof(int) = 4 bytes, sizeof(char*) = 4 bytes (why?)
— What about this user-defined datatype:

typedef struct TreeNode {
int x;
TreeNode *front, *back;

slide 5

Variables: Locations and Values

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

®When a variable is declared, it is bound to some
memory location and becomes its identifier

e Location could be in global, heap, or stack storage
@ -value: memory location (address)

@ r-value: value stored at the memory location
identified by I-value

€ Assighment: A (target) = B (expression)
e Destructive update: overwrites the memory location

identified by A with a value of expression B
— What if a variable appears on both sides of assignment?

slide 6

Copy vs. Reference Semantics

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

€ Copy semantics: expression is evaluated to a
value, which is copied to the target

e Used by imperative languages

® Reference semantics: expression is evaluated to
an object, whose pointer is copied to the target

e Used by object-oriented languages

slide 7

Variables and Assignment

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

€ On the RHS of an assignment, use the variable’s
r-value; on the LHS, use its |-value
e Example: x = x+1
e Meaning: “get r-value of x, add 1, store the result into
the |-value of x”
€ An expression that does not have an |-value
cannot appear on the LHS of an assignment

e What expressions don’t have |-values?
— Examples: 1=x+1, ++x++ (why?)
— What about a[1] = x+1, where a is an array? Why?

slide 8

I-Values and r-Values (1)

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

€ Any expression or assignment statement in an
Imperative language can be understood in terms
of I-values and r-values of variables involved
e In C, also helps with complex pointer dereferencing
and pointer arithmetic
® Literal constants
e Have r-values, but not |-values

@® Variables

e Have both r-values and |-values

e Example: x=x*y means “compute rval(x)*rval(y) and
store it in Ival(x)”

slide 9

I-Values and r-Values (2)

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ Pointer variables
e Their r-values are I-values of another variable
— Intuition: the value of a pointer is an address

@ Overriding r-value and |-value computation in C

e &X always returns |-value of x

e *p always return r-value of p
— If p Is a pointer, this is an |-value of another variable

int x = 5; // lval(x) is some (stack) address, rval(x) == 5

int *p = & // rval(p) == 1lval (x)
*‘p = 2 * x; // rval(p) <- rval(2) * rval (x)

What are the values of
. .
p and x at this point” Slide 10

I Values and - Values (3)

T I i o T T e T T Y P) T e S I O T e R T L Y P i AT T e T S S Y P N i T T

@ Declared functions and procedures
e Have |-values, but no r-values

int f(int v); // 1lval(f) is some global address
typedef int (*IFP) (int); // pointer to an int function that takes an int argument
IFP g = &f; // 1lval{g) <- 1val(f)
(*g) (5); // (rval(g))== 1lval(f), so *g invokes f with argument rval (5)
// the function call operator () has higher precedence than * so
// we have to write (*g) (5) to deference g to invoke f(5)

slide 11

=] =
OO I i o o AT T e T T L T P L i g T e T S o TP O i o e T T e T T L T P T g o AT T e T S T P O i T

E = E = E W i = TRIFER

@ Integer variables, values, operations
@ Assignment

®If
®Go To

slide 12

Structured Control Flow

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ Control flow in imperative languages is most often
designed to be sequential
e Instructions executed in order they are written
e Some also support concurrent execution (Java)

@®Program is structured if control flow is evident
from syntactic (static) structure of program text

e Big idea: programmers can reason about dynamic
execution of a program by just analyzing program text

e Eliminate complexity by creating language constructs
for common control-flow “patterns”
— Iteration, selection, procedures/functions

slide 13

Fortran Control Structure

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

10 IF (X .GT. 0.000001) GO TO 20
11 X =-X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30 X = X+Y
:'“: ‘!:';-' 31;11
50 CONTINUE NS\
X=A §¥- = 5
Y =B-A N =)
GO TO 11 i"»"'fzk?"?é

Similar structure may occur in assembly code

slide 14

Historical Debate

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ Dijkstra, “GO TO Statement Considered Harmful”
e Letter to Editor, Comm. ACM, March 1968
e Linked from the course website

@®Knuth, “Structured Prog. with Go To Statements”
e You can use goto, but do so in structured way ...

@ Continued discussion
e Welch, “GOTO (Considered Harmful)", n is Odd”

® General questions
e Do syntactic rules force good programming style?
e Can they help?

slide 15

O i S o o T o T T P P i 0 o e M T

W P S N e W T Y P o e M T Y i O T T

Standard constructs that structure jumps
If ... then ... else ... end
while ... do ... end

for ... { .. }“

case ...
€ Group code in logical blocks
@ Avoid explicit jumps (except function return)

€ Cannot jump into the middle of a block or
function body

slide 16

[teration

TR i o o T e Y S S o o T T T P P S N e W S T Y R i o e R I S O Y R i

@ Definite

for (int 1

ali] =

}

@ Indefinite
e Termination depends on a dynamically computed value

= 0; 1 < 10; 1i++)

ke T3

T L
LU Al ot bl

{

0; // intialize each array element to zero

int m = 0;

while (n > 0) {
m=m * n;
n=n- 1;

—

How do we know statically (i.e., before
we run the program) that the loop will
terminate, i.e., that n will eventually
become less than or equal to 0?

slide 17

Iteration Constructs in C

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

e while (condition) stmt;
while (condition) { stmt; stmt; ...; }
e do stmt while (condition);
do { stmt; stmt; ...; } while (condition);
e for (<initialize>; <test>; <step>) stmt;
— Restricted form of “while” loop — same as
<initialize>; while (<test>) { stmt; <step> }

for (<initialize>; <test>; <step>) { stmt; stmt; ...; }

slide 18

“Breaking Out” Of A Loop In

a2 e T Y i o o o T e T Y P i o o o T e M S T L P i

i
3
r

A T 2 N e D W R
int v; // v is in the “outer” scope

while (cond == true) {
int x; // x is local to the while blocks scope (its extent and lifetime)

if (x < y) { // special case...
break; // leave while loop
}

// normal case

while (condl == true) {
while (cond2 == true) {

if (x < y) // speci ase
break; //cleave inner loop, but not ouEEE:EEEE:::>

// control resumes here after a break from the inner loop

slide 19

Forced Loop Re Ent ry In C

W P o R T e L T P IR O o s T I P i S o W R T P P e o T e S L Y i o

*

while (cond-expr == true) {
... // do something while cond is true
if (a == b) {

// do something special
continue; // transfer to start of while and re-evaluate cond

// remaining statements of while loop

slide 20

Block-Structured Languages

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

® Nested blocks with local variables

new variables declared in nested blocks
[{in x%
r . : - -
oute {int 3; Inner local variable
block 0=(Xx2: | block
1 global variable
J

e Storage management
— Enter block: allocate space for variables

— Exit block: some or all space may be deallocated
slide 21

Blocks in Common Languages

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

¥ Examples
e C,JavaSeript* {..}
e Algol begin ... end
e ML let ... In ... end

€ Two forms of blocks
e Inline blocks

e Blocks associated with functions or procedures
— We'll talk about these later

* JavaScript functions provides blocks

slide 22

Simplified Machine Model

g, z o ST B
ol T 0 P o R e B AL A L L]

Registers Code Data

> Stack

Program : : i |
counter B

Environment > Heap
pointer

slide 23

Memory Management

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

® Registers, Code segment, Program counter
e |gnore registers (for our purposes) and details of
Instruction set
€ Data segment
e Stack contains data related to block entry/exit
e Heap contains data of varying lifetime

e Environment pointer points to current stack position
— Block entry: add new activation record to stack
— Block exit: remove most recent activation record

slide 24

Scope and Lifetime

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

€ Scope

e Region of program text where declaration is visible

& Lifetime
e Period of time when location is allocated to program

Lint x o Inner declaration of x hides outer one

L int Y = o (“hole in scope”)

Lintx=..; - Lifetime of outer x includes time when
Inner block is executed

}; e Lifetime # scope

slide 25

Inline Blocks

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

& Activation record

e Data structure stored on run-time stack
e Contains space for local variables

{ int x=0;
Int y=x+1;
{ Int z=(X+y)*(x-y);
b

o

Push record with space for x, y
Set values of x, y

Push record for inner block

Set value of z

Pop record for inner block
Pop record for outer block

May need space for variables and intermediate results like (x+y), (x-y)

slide 26

Actlvatlon Record For Inllne Block

OO I O i o o AT T e N L T P L i g« T e T S o TP O i o o T T e T S L T P T i o T T e T T P N i T T

Control link « OControI link

Local variables e Pointer to previous record
on stack
Intermediate results
@® Push record on stack
Control link e Set new control link to

point to old env ptr
e Set env ptr to new record

@ Pop record off stack

e Follow control link of
current record to reset
environment pointer

Local variables

Intermediate results

Environment
pointer

In practice, can be optimized away

slide 27

{ int x=0;

Int y=x+1;
{ Int z=(X+y)*(x-y);
};

j

Push record with space for x, y
Set values of x, y

Push record for inner block
Set value of z

Pop record for inner block
Pop record for outer block

Environment
pointer

—t | side 2

	Imperative Programming
	Reading Assignment
	Imperative Programming
	Elements of Imperative Programs
	Variable Declarations
	Variables: Locations and Values
	Copy vs. Reference Semantics
	Variables and Assignment
	l-Values and r-Values (1)
	l-Values and r-Values (2)
	l-Values and r-Values (3)
	Turing-Complete Mini-Language
	Structured Control Flow
	Fortran Control Structure
	Historical Debate
	Modern Style
	Iteration
	Iteration Constructs in C
	“Breaking Out” Of A Loop in C
	Forced Loop Re-Entry in C
	Block-Structured Languages
	Blocks in Common Languages
	Simplified Machine Model
	Memory Management
	Scope and Lifetime
	Inline Blocks
	Activation Record For Inline Block
	Example

