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Reading Assignment

Mitchell, Chapter 7
C Reference Manual, Chapters 4 and 9
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Procedural Abstraction

Procedure is a named parameterized scope
• Allows programmer to focus on a function interface, 

ignoring the details of how it is computed

Value-returning functions
• Example: x = (b*b - sqrt(4*a*c))/2*a

Non-value returning functions
• Called “procedures” (Ada), “subroutines” (Fortran), 

“void functions/methods” (C, C++, Java)
• Have a visible side effect: change the state of some 

data value not defined in the function definition
• Example: strcpy(s1,s2)

Contains local
variable declarations
and statementsCan pass arguments

into the scope
Can be overloaded
(e.g., binary +)
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System Calls

OS procedures often return status codes
• Not the result of computing some function, but an 

indicator of whether the procedure succeeded or 
failed to cause a certain side effect
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Arguments and Parameters

Argument: expression that 
appears in a function call
Parameter: identifier that 
appears in function declaration
Parameter-argument matching 
by number and position
• Exception: Perl.  Instead of being 

declared in a function header, 
parameters are available as 
elements of special array @_

int h, i;
void B(int w) {

int j, k;
i = 2*w;
w = w+1;

} 
void A(int x, int y) {

bool i, j;
B(h);

}
int main() {

int a, b;
h = 5; a = 3; b = 2;
A(a, b);

}
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Parameter Passing Mechanisms

By value
By reference
By value-result
By result
By name
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Pass by Value

Caller passes r-value of the argument to function
• Compute the value of the argument at the time of the 

call and assign that value to the parameter
• Reduces “aliasing”

– Aliasing: two names refer to the same memory location

Function cannot change value of caller’s variable
All arguments in C and Java are passed by value
• To allow caller’s variables to be modified, pointers can 

be passed as arguments
– Example: void swap(int *a, int *b) { … }

Is there a contradiction here?
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Pass by Reference

Caller passes l-value of the 
argument to function
• Compute the address of the 

argument and assign that 
address to the parameter

• Increases aliasing (why?)

Function can modify caller’s 
variable via the address it 
received as argument

int h, i;
void B(int* w) {

int j, k;
i = 2*(*w);
*w = *w+1;

} 
void A(int* x, int* y) {

bool i, j;
B(&h);

}
int main() {

int a, b;
h = 5; a = 3; b = 2;
A(&a, &b);

}
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ML Example

function f (x) =
{ x = x+1; return x;  }

var y = 0;
print (f(y)+y);

fun  f (x : int ref) =
( x := !x+1;  !x  );

y = ref 0 : int ref;
f(y) + !y;

fun f (z : int) =
let x = ref z in 

x := !x+1; !x 
end;

y = ref 0 : int ref;
f(!y) + !y;

pseudo-code Standard ML
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Pass by Reference in C++

Special “reference type” indicates that l-value is 
passed as argument
• Recall that in C, only r-values can be arguments

& operator is overloaded in C++
• When applied to a variable, gives its l-value
• When applied to type name in parameter list, means 

pass the argument by reference

l-values for C++ reference 
types are completely determined
at compile-time
(why is this important?)
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Two Ways To Pass By Reference

void swap (int *a, int *b)  {
int temp = *a;
*a = *b;
*b = temp;

}

int x=3, y=4;
swap(&x, &y);

C or C++

void swap (int& a, int& b)  {
int temp = a;
a = b;
b = temp;

}

int x=3, y=4;
swap(x, y);

C++ only

Which one is better?  Why?
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Pass by Value-Result

Pass by value at the time of the call and/or copy 
the result back to the argument at the end of 
the call (copy-in-copy-out) 
• Example: “in out” parameters in Ada

Reference and value-result are the same, except 
when aliasing occurs
• Same variable is passed for two different parameters
• Same variable is both passed and globally referenced 

from the called function
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Pass by Name

Textually substitute the argument for every 
instance of its corresponding parameter in the 
function body
• Originated with Algol 60 but dropped by Algol’s 

successors -- Pascal, Ada, Modula

Example of late binding
• Evaluation of the argument is delayed until its 

occurrence in the function body is actually executed
• Associated with lazy evaluation in functional 

languages (e.g., Haskell)
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Jensen’s Device

Computes        in Algol 60

begin
integer i; 
real procedure sum (i, lo, hi, term); 

value lo, hi; 
integer i, lo, hi; 
real term; 

begin
real temp; 
temp := 0; 
for i := lo step 1 until hi do

temp := temp + term; 
sum := temp 

end; 
print (sum (i, 1, 100, 1/i)) 

end

passed by name

becomes 1/i when
sum is executed
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Macro

Textual substitution
#define swap(a,b) temp=a; a=b; b=temp;
…
int x=3, y=4;
int temp;
swap(x,y);

Looks like a function definition, but …
• Does not obey the lexical scope rules (i.e., visibility of 

variable declarations)
• No type information for arguments or result

Textually expands to
temp=x; x=y; y=temp;
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Problems with Macro Expansion

#define swap(a,b) temp=a; a=b; b=temp;
…
if (x<y)

swap(x,y);

Textually expands to
if (x<y)

temp=x;
x=y;
y=temp;

Why not #define swap(a,b) { int temp=a; a=b; b=temp; }?

Instead #define swap(a,b) do {
int temp=a; a=b; b=temp;

} while(false);

Fixes type of swapped variables
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Variable Arguments

In C, can define a function with a variable 
number of arguments
• Example: void printf(const char* format, …)

Examples of usage:

Part of
syntax!

Format specification encoded by
special %-encoded characters

• %d,%i,%o,%u,%x,%X – integer argument
• %s – string argument
• %p – pointer argument (void *)
• Several others (see C Reference Manual!)



slide 18

Implementation of Variable Args

Special functions va_start, va_arg, va_end
compute arguments at run-time (how?)
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