
slide 1

Vitaly Shmatikov

CS 345

Functions

slide 2

Reading Assignment

Mitchell, Chapter 7
C Reference Manual, Chapters 4 and 9

slide 3

Procedural Abstraction

Procedure is a named parameterized scope
• Allows programmer to focus on a function interface,

ignoring the details of how it is computed

Value-returning functions
• Example: x = (b*b - sqrt(4*a*c))/2*a

Non-value returning functions
• Called “procedures” (Ada), “subroutines” (Fortran),

“void functions/methods” (C, C++, Java)
• Have a visible side effect: change the state of some

data value not defined in the function definition
• Example: strcpy(s1,s2)

Contains local
variable declarations
and statementsCan pass arguments

into the scope
Can be overloaded
(e.g., binary +)

slide 4

System Calls

OS procedures often return status codes
• Not the result of computing some function, but an

indicator of whether the procedure succeeded or
failed to cause a certain side effect

slide 5

Arguments and Parameters

Argument: expression that
appears in a function call
Parameter: identifier that
appears in function declaration
Parameter-argument matching
by number and position
• Exception: Perl. Instead of being

declared in a function header,
parameters are available as
elements of special array @_

int h, i;
void B(int w) {

int j, k;
i = 2*w;
w = w+1;

}
void A(int x, int y) {

bool i, j;
B(h);

}
int main() {

int a, b;
h = 5; a = 3; b = 2;
A(a, b);

}

slide 6

Parameter Passing Mechanisms

By value
By reference
By value-result
By result
By name

slide 7

Pass by Value

Caller passes r-value of the argument to function
• Compute the value of the argument at the time of the

call and assign that value to the parameter
• Reduces “aliasing”

– Aliasing: two names refer to the same memory location

Function cannot change value of caller’s variable
All arguments in C and Java are passed by value
• To allow caller’s variables to be modified, pointers can

be passed as arguments
– Example: void swap(int *a, int *b) { … }

Is there a contradiction here?

slide 8

Pass by Reference

Caller passes l-value of the
argument to function
• Compute the address of the

argument and assign that
address to the parameter

• Increases aliasing (why?)

Function can modify caller’s
variable via the address it
received as argument

int h, i;
void B(int* w) {

int j, k;
i = 2*(*w);
*w = *w+1;

}
void A(int* x, int* y) {

bool i, j;
B(&h);

}
int main() {

int a, b;
h = 5; a = 3; b = 2;
A(&a, &b);

}

slide 9

ML Example

function f (x) =
{ x = x+1; return x; }

var y = 0;
print (f(y)+y);

fun f (x : int ref) =
(x := !x+1; !x);

y = ref 0 : int ref;
f(y) + !y;

fun f (z : int) =
let x = ref z in

x := !x+1; !x
end;

y = ref 0 : int ref;
f(!y) + !y;

pseudo-code Standard ML

slide 10

Pass by Reference in C++

Special “reference type” indicates that l-value is
passed as argument
• Recall that in C, only r-values can be arguments

& operator is overloaded in C++
• When applied to a variable, gives its l-value
• When applied to type name in parameter list, means

pass the argument by reference

l-values for C++ reference
types are completely determined
at compile-time
(why is this important?)

slide 11

Two Ways To Pass By Reference

void swap (int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int x=3, y=4;
swap(&x, &y);

C or C++

void swap (int& a, int& b) {
int temp = a;
a = b;
b = temp;

}

int x=3, y=4;
swap(x, y);

C++ only

Which one is better? Why?

slide 12

Pass by Value-Result

Pass by value at the time of the call and/or copy
the result back to the argument at the end of
the call (copy-in-copy-out)
• Example: “in out” parameters in Ada

Reference and value-result are the same, except
when aliasing occurs
• Same variable is passed for two different parameters
• Same variable is both passed and globally referenced

from the called function

slide 13

Pass by Name

Textually substitute the argument for every
instance of its corresponding parameter in the
function body
• Originated with Algol 60 but dropped by Algol’s

successors -- Pascal, Ada, Modula

Example of late binding
• Evaluation of the argument is delayed until its

occurrence in the function body is actually executed
• Associated with lazy evaluation in functional

languages (e.g., Haskell)

slide 14

Jensen’s Device

Computes in Algol 60

begin
integer i;
real procedure sum (i, lo, hi, term);

value lo, hi;
integer i, lo, hi;
real term;

begin
real temp;
temp := 0;
for i := lo step 1 until hi do

temp := temp + term;
sum := temp

end;
print (sum (i, 1, 100, 1/i))

end

passed by name

becomes 1/i when
sum is executed

slide 15

Macro

Textual substitution
#define swap(a,b) temp=a; a=b; b=temp;
…
int x=3, y=4;
int temp;
swap(x,y);

Looks like a function definition, but …
• Does not obey the lexical scope rules (i.e., visibility of

variable declarations)
• No type information for arguments or result

Textually expands to
temp=x; x=y; y=temp;

slide 16

Problems with Macro Expansion

#define swap(a,b) temp=a; a=b; b=temp;
…
if (x<y)

swap(x,y);

Textually expands to
if (x<y)

temp=x;
x=y;
y=temp;

Why not #define swap(a,b) { int temp=a; a=b; b=temp; }?

Instead #define swap(a,b) do {
int temp=a; a=b; b=temp;

} while(false);

Fixes type of swapped variables

slide 17

Variable Arguments

In C, can define a function with a variable
number of arguments
• Example: void printf(const char* format, …)

Examples of usage:

Part of
syntax!

Format specification encoded by
special %-encoded characters

• %d,%i,%o,%u,%x,%X – integer argument
• %s – string argument
• %p – pointer argument (void *)
• Several others (see C Reference Manual!)

slide 18

Implementation of Variable Args

Special functions va_start, va_arg, va_end
compute arguments at run-time (how?)

	Functions
	Reading Assignment
	Procedural Abstraction
	System Calls
	Arguments and Parameters
	Parameter Passing Mechanisms
	Pass by Value
	Pass by Reference
	ML Example
	Pass by Reference in C++
	Two Ways To Pass By Reference
	Pass by Value-Result
	Pass by Name
	Jensen’s Device
	Macro
	Problems with Macro Expansion
	Variable Arguments
	Implementation of Variable Args

