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Activation Records for Functions

Block of information (“frame”) associated with 
each function call, including:
• Parameters
• Local variables
• Return address
• Location to put return value when function exits
• Control link to the caller’s activation record
• Saved registers
• Temporary variables and intermediate results
• (not always) Access link to the function’s static parent
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Activation Record Layout

Return address
• Location of code to 

execute on function return

Return-result address
• Address in activation 

record of calling block to 
receive returned value

Parameters
• Locations to contain data 

from calling block

Control link

Local variables

Intermediate results

Environment 
pointer

Parameters

Return address

Return-result addr
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Example

Function
fact(n) = if n<=1  then 1

else n * fact(n-1)
• Return result address:

location to put fact(n)

Parameter
• Set to value of n by calling 

sequence

Intermediate result
• Locations to contain value 

of fact(n-1)

Control link

Local variables

Intermediate results

Environment 
pointer

Parameters

Return address

Return result addr
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Typical x86 Activation Record

frame pointer

stack pointer



slide 6

Run-Time Stack

Activation records are kept on the stack
• Each new call pushes an activation record
• Each completing call pops the topmost one
• Stack has all records of all active calls at any moment 

during execution (topmost record = most recent call)

Example: fact(3)
• Pushes one activation record on the stack, calls fact(2)
• This call pushes another record, calls fact(1)
• This call pushes another record, resulting in three 

activation records on the stack
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Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Function Call

Return address omitted; would 
be a pointer into code segment

Control link

fact(n-1)
n

Return-result addr
2

fact(2)

fact(n) = if n<= 1  then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr
k

fact(k)

Environment 
pointer

Control link

fact(n-1)
n

Return-result addr
1

fact(1)
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Function Return

Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

fact(n) = if n<=1  then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr

2
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

High
addresses

Low
addresses
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Scoping Rules

Global and local variables
{ int x=0;  

int y=x+1; 

{  int z=(x+y)*(x-y);

};

};

x, y are local to outer block 
z is local to inner bock
x, y are global to inner block

Static scope
• Global refers to declaration in closest enclosing block

Dynamic scope
• Global refers to most recent activation record

Do you see the difference?  (think function calls)
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Static vs. Dynamic Scope

Example

var x=1;
function g(z) { return x+z; }
function f(y) {

var x = y+1; 
return g(y*x);

}
f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12)

Which x is used for expression x+z ?

static scope
dynamic scope
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Activation Record For Static Scope

Control link
• Link to activation record of 

previous (calling) block
• Depends on dynamic 

behavior of the program

Access link
• Link to activation record of 

closest lexically enclosing 
block in program text

– Is this needed in C?  (why?)

• Depends on the static 
program text

Control link

Local variables

Intermediate results

Environment 
pointer

Parameters

Return address

Return result addr

Access link
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Static Scope with Access Links

var x=1;
function g(z) = { return x+z; }

function f(y) =
{ var x = y+1; 

return g(y*x); }
f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

g …

f …

control link
access link

control link
access link

access link
control link

Use access link to find global variable:
- Access link is always set to frame of
closest enclosing lexical block

- For function body, this is the block that
contains function definition
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Variable Arguments (Redux)

Special functions va_start, va_arg, va_end
compute arguments at run-time (how?)
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Activation Record for Variable Args

va_start computes
location on the stack
past last statically
known argument

va_arg(ap,type)
retrieves next arg 
from offset ap
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Tail Recursion           (first-order case)

Function g makes a tail call to function f if 
return value of function f is return value of g
Example

fun g(x) = if x>0 then f(x) else f(x)*2

Optimization: can pop current activation record 
on a tail call
• Especially useful for recursive tail call because next 

activation record has exactly same form 

tail call not a tail call



slide 17

Example of Tail Recursion

fun f(x,y) = if x>y 
then x 
else f(2*x, y);

f(1,3) + 7;

control
return val
x 1
y 3

control
return val
x 1
y 3

control
return val
x 2
y 3

control
return val
x 4
y 3

f(1,3) Optimization
• Set return value 

address to that of 
caller

• Can we do same 
with control link?

Optimization
• Avoid return to 

caller
• Does this work with 

dynamic scope?

Calculate least power of 2 greater than y
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Tail Recursion Elimination   

control
return val
x 1
y 3

f(4,3)

Optimization
• pop followed by push -

reuse activation record in place
• Tail recursive function is 

equivalent to iterative loop

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

fun f(x,y) = if x>y 
then x 
else f(2*x, y);

f(1,3) + 7;
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Tail Recursion and Iteration   

fun f(x,y) = if x>y 
then x 
else f(2*x, y);

f(1,y);

control
return val
x 1
y 3

f(4,3)

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

function g(y) {
var x = 1;
while (!x>y) 

x = 2*x;
return x;

}
initial value

loop body

test
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Higher-Order Functions

Function passed as argument
• Need pointer to activation record “higher up” in stack

Function returned as the result of function call
• Need to keep activation record of the returning 

function (why?)

Functions that take function(s) as input and 
return functions as output are known as 
functionals
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Pass Function as Argument

val x = 4;
fun f(y) = x*y;

fun g(h) = let
val x=7 
in 
h(3) + x;

g(f);

There are two declarations of x
Which one is used for each occurrence of x?

{ var x = 4;
{ function f(y) {return x*y;}

{ function g(h) {
var x = 7;
return h(3) + x;

}
g(f);

}  }  }
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Static Scope for Function Argument

val x = 4;
fun f(y) = x*y;

fun g(h) = 
let 

val x=7 
in 

h(3) + x;
g(f);

x 4

h

y 3

f

g

Code 
for f

Code 
for gg(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set?
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Closures

Function value is pair closure = 〈env, code 〉
• Idea: statically scoped function must carry a link to 

its static environment with it
• Only needed if function is defined in a nested block 

(why?)

When a function represented by a closure is 
called…
• Allocate activation record for call (as always)
• Set the access link in the activation record using the 

environment pointer from the closure
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Function Argument and Closures

val x = 4;
fun f(y) = x*y;

fun g(h) = 
let 

val x=7 
in 

h(3) + x;
g(f);

x 4

access link set 
from closure

Code 
for f

f
access

Run-time stack with access links

Code 
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access
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Summary: Function Arguments

Use closure to maintain a pointer to the static 
environment of a function body
When called, set access link from closure
All access links point “up” in stack
• May jump past activation records to find global vars
• Still deallocate activation records using stack (last-in-

first-out) order
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Return Function as Result

Language feature (e.g., ML)
Functions that return “new” functions
• Example: fun compose(f,g) = (fn x => g(f x));
• Function is “created” dynamically

– Expression with free variables; values determined at run-time

• Function value is closure = 〈env, code〉
• Code not compiled dynamically (in most languages)
• Need to maintain environment of the creating function 

(why?)
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Return Function with Private State

• Function to “make counter” 
returns a closure

• How is correct value of 
count determined in c(2) ?

fun mk_counter (init : int) =   
let  val count = ref init 

fun counter(inc:int) =
(count := !count + inc; !count)

in
counter

end;
val c = mk_counter(1);  
c(2) + c(2);
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fun mk_counter (init : int) =   
let  val count = ref init 

fun counter(inc:int) =
(count := !count + inc; !count)

in
counter

end;
val c = mk_counter(1);  
c(2) + c(2);

Function Results and Closures

c
access

Code for 
counter

Code for 
mk_counter

c(2) access
inc 2

mk_c

1mk_counter(1)

count
init 1

access

counter

Call changes cell 
value from 1 to 3

3
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Closures in Web Programming

Useful for event handlers

function AppendButton(container, name, message) {
var btn = document.createElement('button');
btn.innerHTML = name;
btn.onclick = function(evt) { alert(message); }
container.appendChild(btn);

}

Environment pointer lets the button’s click 
handler find the message to display
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Managing Closures

Closures as used to maintain static environment  
of functions as they are passed around
May need to keep activation records after 
function returns (why?)
• Stack (last-in-first-out) order fails!  (why?)

Possible “stack” implementation:
• Put activation records on heap
• Instead of explicit deallocation, invoke garbage 

collector as needed
– Not as totally crazy as is sounds (may only need to search 

reachable data)
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