
slide 1

Vitaly Shmatikov

CS 345

Scope and Activation Records

slide 2

Activation Records for Functions

Block of information (“frame”) associated with
each function call, including:
• Parameters
• Local variables
• Return address
• Location to put return value when function exits
• Control link to the caller’s activation record
• Saved registers
• Temporary variables and intermediate results
• (not always) Access link to the function’s static parent

slide 3

Activation Record Layout

Return address
• Location of code to

execute on function return

Return-result address
• Address in activation

record of calling block to
receive returned value

Parameters
• Locations to contain data

from calling block

Control link

Local variables

Intermediate results

Environment
pointer

Parameters

Return address

Return-result addr

slide 4

Example

Function
fact(n) = if n<=1 then 1

else n * fact(n-1)
• Return result address:

location to put fact(n)

Parameter
• Set to value of n by calling

sequence

Intermediate result
• Locations to contain value

of fact(n-1)

Control link

Local variables

Intermediate results

Environment
pointer

Parameters

Return address

Return result addr

slide 5

Typical x86 Activation Record

frame pointer

stack pointer

slide 6

Run-Time Stack

Activation records are kept on the stack
• Each new call pushes an activation record
• Each completing call pops the topmost one
• Stack has all records of all active calls at any moment

during execution (topmost record = most recent call)

Example: fact(3)
• Pushes one activation record on the stack, calls fact(2)
• This call pushes another record, calls fact(1)
• This call pushes another record, resulting in three

activation records on the stack

slide 7

Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Function Call

Return address omitted; would
be a pointer into code segment

Control link

fact(n-1)
n

Return-result addr
2

fact(2)

fact(n) = if n<= 1 then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr
k

fact(k)

Environment
pointer

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

slide 8

Function Return

Control link

fact(n-1)
n

Return-result addr
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

Control link

fact(n-1)
n

Return-result addr
1

fact(1)

fact(n) = if n<=1 then 1
else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr

2
3

fact(3)

Control link

fact(n-1)
n

Return-result addr

1
2

fact(2)

High
addresses

Low
addresses

slide 9

Scoping Rules

Global and local variables
{ int x=0;

int y=x+1;

{ int z=(x+y)*(x-y);

};

};

x, y are local to outer block
z is local to inner bock
x, y are global to inner block

Static scope
• Global refers to declaration in closest enclosing block

Dynamic scope
• Global refers to most recent activation record

Do you see the difference? (think function calls)

slide 10

Static vs. Dynamic Scope

Example

var x=1;
function g(z) { return x+z; }
function f(y) {

var x = y+1;
return g(y*x);

}
f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12)

Which x is used for expression x+z ?

static scope
dynamic scope

slide 11

Activation Record For Static Scope

Control link
• Link to activation record of

previous (calling) block
• Depends on dynamic

behavior of the program

Access link
• Link to activation record of

closest lexically enclosing
block in program text

– Is this needed in C? (why?)

• Depends on the static
program text

Control link

Local variables

Intermediate results

Environment
pointer

Parameters

Return address

Return result addr

Access link

slide 13

Static Scope with Access Links

var x=1;
function g(z) = { return x+z; }

function f(y) =
{ var x = y+1;

return g(y*x); }
f(3);

x 1

x 4
y 3

z 12

outer block

f(3)

g(12) control link
access link

g …

f …

control link
access link

control link
access link

access link
control link

Use access link to find global variable:
- Access link is always set to frame of
closest enclosing lexical block

- For function body, this is the block that
contains function definition

slide 14

Variable Arguments (Redux)

Special functions va_start, va_arg, va_end
compute arguments at run-time (how?)

slide 15

Activation Record for Variable Args

va_start computes
location on the stack
past last statically
known argument

va_arg(ap,type)
retrieves next arg
from offset ap

slide 16

Tail Recursion (first-order case)

Function g makes a tail call to function f if
return value of function f is return value of g
Example

fun g(x) = if x>0 then f(x) else f(x)*2

Optimization: can pop current activation record
on a tail call
• Especially useful for recursive tail call because next

activation record has exactly same form

tail call not a tail call

slide 17

Example of Tail Recursion

fun f(x,y) = if x>y
then x
else f(2*x, y);

f(1,3) + 7;

control
return val
x 1
y 3

control
return val
x 1
y 3

control
return val
x 2
y 3

control
return val
x 4
y 3

f(1,3) Optimization
• Set return value

address to that of
caller

• Can we do same
with control link?

Optimization
• Avoid return to

caller
• Does this work with

dynamic scope?

Calculate least power of 2 greater than y

slide 18

Tail Recursion Elimination

control
return val
x 1
y 3

f(4,3)

Optimization
• pop followed by push -

reuse activation record in place
• Tail recursive function is

equivalent to iterative loop

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

fun f(x,y) = if x>y
then x
else f(2*x, y);

f(1,3) + 7;

slide 19

Tail Recursion and Iteration

fun f(x,y) = if x>y
then x
else f(2*x, y);

f(1,y);

control
return val
x 1
y 3

f(4,3)

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

function g(y) {
var x = 1;
while (!x>y)

x = 2*x;
return x;

}
initial value

loop body

test

slide 20

Higher-Order Functions

Function passed as argument
• Need pointer to activation record “higher up” in stack

Function returned as the result of function call
• Need to keep activation record of the returning

function (why?)

Functions that take function(s) as input and
return functions as output are known as
functionals

slide 21

Pass Function as Argument

val x = 4;
fun f(y) = x*y;

fun g(h) = let
val x=7
in
h(3) + x;

g(f);

There are two declarations of x
Which one is used for each occurrence of x?

{ var x = 4;
{ function f(y) {return x*y;}

{ function g(h) {
var x = 7;
return h(3) + x;

}
g(f);

} } }

slide 22

Static Scope for Function Argument

val x = 4;
fun f(y) = x*y;

fun g(h) =
let

val x=7
in

h(3) + x;
g(f);

x 4

h

y 3

f

g

Code
for f

Code
for gg(f)

h(3)

x * y

x 7

follow access link
local var

How is access link for h(3) set?

slide 23

Closures

Function value is pair closure = 〈env, code 〉
• Idea: statically scoped function must carry a link to

its static environment with it
• Only needed if function is defined in a nested block

(why?)

When a function represented by a closure is
called…
• Allocate activation record for call (as always)
• Set the access link in the activation record using the

environment pointer from the closure

slide 24

Function Argument and Closures

val x = 4;
fun f(y) = x*y;

fun g(h) =
let

val x=7
in

h(3) + x;
g(f);

x 4

access link set
from closure

Code
for f

f
access

Run-time stack with access links

Code
for g

h(3)
y 3

access

g(f)
h

access

x 7

g
access

slide 25

Summary: Function Arguments

Use closure to maintain a pointer to the static
environment of a function body
When called, set access link from closure
All access links point “up” in stack
• May jump past activation records to find global vars
• Still deallocate activation records using stack (last-in-

first-out) order

slide 26

Return Function as Result

Language feature (e.g., ML)
Functions that return “new” functions
• Example: fun compose(f,g) = (fn x => g(f x));
• Function is “created” dynamically

– Expression with free variables; values determined at run-time

• Function value is closure = 〈env, code〉
• Code not compiled dynamically (in most languages)
• Need to maintain environment of the creating function

(why?)

slide 27

Return Function with Private State

• Function to “make counter”
returns a closure

• How is correct value of
count determined in c(2) ?

fun mk_counter (init : int) =
let val count = ref init

fun counter(inc:int) =
(count := !count + inc; !count)

in
counter

end;
val c = mk_counter(1);
c(2) + c(2);

slide 28

fun mk_counter (init : int) =
let val count = ref init

fun counter(inc:int) =
(count := !count + inc; !count)

in
counter

end;
val c = mk_counter(1);
c(2) + c(2);

Function Results and Closures

c
access

Code for
counter

Code for
mk_counter

c(2) access
inc 2

mk_c

1mk_counter(1)

count
init 1

access

counter

Call changes cell
value from 1 to 3

3

slide 29

Closures in Web Programming

Useful for event handlers

function AppendButton(container, name, message) {
var btn = document.createElement('button');
btn.innerHTML = name;
btn.onclick = function(evt) { alert(message); }
container.appendChild(btn);

}

Environment pointer lets the button’s click
handler find the message to display

slide 30

Managing Closures

Closures as used to maintain static environment
of functions as they are passed around
May need to keep activation records after
function returns (why?)
• Stack (last-in-first-out) order fails! (why?)

Possible “stack” implementation:
• Put activation records on heap
• Instead of explicit deallocation, invoke garbage

collector as needed
– Not as totally crazy as is sounds (may only need to search

reachable data)

	Scope and Activation Records
	Activation Records for Functions
	Activation Record Layout
	Example
	Typical x86 Activation Record
	Run-Time Stack
	Function Call
	Function Return
	Scoping Rules
	Static vs. Dynamic Scope
	Activation Record For Static Scope
	Static Scope with Access Links
	Variable Arguments (Redux)
	Activation Record for Variable Args
	Tail Recursion (first-order case)
	Example of Tail Recursion
	Tail Recursion Elimination
	Tail Recursion and Iteration
	Higher-Order Functions
	Pass Function as Argument
	Static Scope for Function Argument
	Closures
	Function Argument and Closures
	Summary: Function Arguments
	Return Function as Result
	Return Function with Private State
	Function Results and Closures
	Closures in Web Programming
	Managing Closures

