
Vitaly Shmatikov

CS 345

Buffer Overflow and
Stack Smashing

slide 1

slide 2

Reading Assignment

“Smashing the Stack for Fun and Profit”
by Aleph One
• Linked from the course website

Homework 2 can be done in 2-student
teams

slide 3

A Bit of History: Morris Worm

Worm was released in 1988 by Robert Morris
• Graduate student at Cornell, son of NSA chief scientist
• Convicted under Computer Fraud and Abuse Act,

sentenced to 3 years of probation and 400 hours of
community service

• Now a computer science professor at MIT

Worm was intended to propagate slowly and
harmlessly measure the size of the Internet
Due to a coding error, it created new copies as
fast as it could and overloaded infected machines
$10-100M worth of damage

slide 4

Morris Worm and Buffer Overflow

One of the worm’s propagation techniques was
a buffer overflow attack against a vulnerable
version of fingerd on VAX systems
• By sending special string to finger daemon, worm

caused it to execute code creating a new worm copy
• Unable to determine remote OS version, worm also

attacked fingerd on Suns running BSD, causing them
to crash (instead of spawning a new copy)

slide 5

Famous Buffer Overflow Attacks

Morris worm (1988): overflow in fingerd
• 6,000 machines infected (10% of existing Internet)

CodeRed (2001): overflow in MS-IIS server
• 300,000 machines infected in 14 hours

SQL Slammer (2003): overflow in MS-SQL server
• 75,000 machines infected in 10 minutes (!!)

Sasser (2004): overflow in Windows LSASS
• Around 500,000 machines infected

Conficker (2008-09): overflow in Windows Server
• Around 10 million machines infected (estimates vary)

Responsible for user
authentication in Windows

slide 6

Why Are We Insecure?

126 CERT security advisories (2000-2004)
Of these, 87 are memory corruption vulnerabilities
73 are in applications providing remote services
• 13 in HTTP servers, 7 in database services, 6 in remote

login services, 4 in mail services, 3 in FTP services

Most exploits involve illegitimate control transfers
• Jumps to injected attack code, return-to-libc, etc.
• Therefore, most defenses focus on control-flow security

But exploits can also target configurations, user
data and decision-making values

[Chen et al. 2005]

slide 7

Buffer is a data storage area inside computer
memory (stack or heap)
• Intended to hold pre-defined amount of data
• If executable code is supplied as “data”, victim’s

machine may be fooled into executing it
– Code will self-propagate or give attacker control over machine

Attack can exploit any memory operation
• Pointer assignment, format strings, memory allocation

and de-allocation, function pointers, calls to library
routines via offset tables

Memory Exploits

slide 8

Stack Buffers

Suppose Web server contains this function
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

When this function is invoked, a new frame with
local variables is pushed onto the stack

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

Top of
stack

Stack grows this way

buf sfp
ret
addr str

Local variables

Frame of the
calling function

Execute code
at this address
after func() finishes

ArgumentsPointer to
previous
frame

slide 9

What If Buffer is Overstuffed?

Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

buf str

This will be
interpreted
as return address!

overflow Top of
stack

Frame of the
calling function

slide 10

Executing Attack Code

Suppose buffer contains attacker-created string
• For example, *str contains a string received from the

network as input to some network service daemon

When function exits, code in the buffer will be
executed, giving attacker a shell
• Root shell if the victim program is setuid root

code str Frame of the
calling functionret

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

Top of
stack

int foo (void (*funcp)()) {
char* ptr = point_to_an_array;
char buf[128];
gets (buf);
strncpy(ptr, buf, 8);
(*funcp)();

}

String
grows

Stack
grows

int bar (int val1) {
int val2;
foo (a_function_pointer);

}

Contaminated
memory

Most popular
target

val1
val2

arguments (funcp)
return address
Previous Frame Pointer
pointer var (ptr)
buffer (buf)

Stack Corruption (Redux)

slide 11

args (funcp)
return address
PFP
pointer var (ptr)
buffer (buf)

Attack code

① Change the return address to point
to the attack code. After the
function returns, control is
transferred to the attack code

② … or return-to-libc: use existing
instructions in the code segment
such as system(), exec(), etc. as
the attack code

①

② set stack pointers to
return to a dangerous
library function

“/bin/sh”

system()

Attack #1: Return Address

slide 12

slide 13

Executable attack code is stored on stack, inside
the buffer containing attacker’s string
• Stack memory is supposed to contain only data, but…

For the basic attack, overflow portion of the
buffer must contain correct address of attack
code in the RET position
• The value in the RET position must point to the

beginning of attack assembly code in the buffer
– Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position
his buffer will be when the function is called

Buffer Overflow Issues

slide 14

Problem: No Range Checking

strcpy does not check input size
• strcpy(buf, str) simply copies memory contents into

buf starting from *str until “\0” is encountered,
ignoring the size of area allocated to buf

Many C library functions are unsafe
• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …)

slide 15

strncpy(char *dest, const char *src, size_t n)
• If strncpy is used instead of strcpy, no more than n

characters will be copied from *src to *dest
– Programmer has to supply the right value of n

Potential overflow in htpasswd.c (Apache 1.3):
… strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw); …

Published “fix” (do you see the problem?):
… strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

slide 16

Published “fix” for Apache htpasswd overflow:
… strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

args (funcp)
return address
PFP
pointer var (ptr)
buffer (buf)

Attack code

① Change a function pointer to point
to the attack code

② Any memory, even not in the stack,
can be modified by the statement
that stores a value into the
compromised pointer
strncpy(ptr, buf, 8);
*ptr = 0;

Function pointer

Global Offset Table

①

②

Attack #2: Pointer Variables

slide 17

slide 18

Home-brewed range-checking string copy
void notSoSafeCopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}
void main(int argc, char *argv[]) {

if (argc==2)
notSoSafeCopy(argv[1]);

}

Off-By-One Overflow

1-byte overflow: can’t change RET, but can
change pointer to previous stack frame
• On little-endian architecture, make it point into buffer
• RET for previous function will be read from buffer!

This will copy 513
characters into
buffer. Oops!

args (funcp)
return address
PFP
pointer var (ptr)
buffer (buf)

Attack code

return address
PFP

Attack #3: Frame Pointer

① Change the caller’s saved frame
pointer to point to attack-controlled
memory. Caller’s return address will
be read from this memory.

slide 19

slide 20

Two’s Complement

Binary representation of negative integers
Represent X (where X<0) as 2N-|X|

N is word size (e.g., 32 bits on x86 architecture)

0 0 0 0 … 0 1

0 1 1 1 … 1 1

1 1 1 1 … 1 1

1 1 1 1 … 1 0

1 0 0 0 … 0 0

1

231-1

-1

-2

-231

231 ??

slide 21

Integer Overflow

static int getpeername1(p, uap, compat) {
// In FreeBSD kernel, retrieves address of peer to which a socket is connected

…
struct sockaddr *sa;
…

len = MIN(len, sa->sa_len);
… copyout(sa, (caddr_t)uap->asa, (u_int)len);
…

}

Checks that “len” is not too big

Copies “len” bytes from
kernel memory to user space

Negative “len” will always pass this check…

… interpreted as a huge
unsigned integer here

… will copy up to 4G of
kernel memory

slide 22

Overflowing buffers on heap can change pointers
that point to important data
• Sometimes can also transfer execution to attack code

– For example, December 2008 attack on XML parser in Internet
Explorer 7 - see http://isc.sans.org/diary.html?storyid=5458

Illegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use
it to write into a normally inaccessible file
• For example, replace a filename pointer with a pointer

into buffer location containing name of a system file
– Instead of temporary file, write into AUTOEXEC.BAT

Heap Overflow

slide 23

Variable Arguments in C

In C, can define a function with a variable
number of arguments
• Example: void printf(const char* format, …)

Examples of usage:

Format specification encoded by
special %-encoded characters

• %d,%i,%o,%u,%x,%X – integer argument
• %s – string argument
• %p – pointer argument (void *)
• Several others

Implementation of Variable Args

Special functions va_start, va_arg, va_end
compute arguments at run-time (how?)

slide 24

slide 25

Activation Record for Variable Args

va_start computes
location on the stack
past last statically
known argument

va_arg(ap,type)
retrieves next arg
from offset ap

slide 26

Proper use of printf format string:
… int foo=1234;
printf(“foo = %d in decimal, %X in hex”,foo,foo); …

– This will print
foo = 1234 in decimal, 4D2 in hex

Sloppy use of printf format string:
… char buf[13]=“Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf); …

– If the buffer contains a format symbol starting with %, location
pointed to by printf’s internal stack pointer will be interpreted
as an argument of printf. This can be exploited to move
printf’s internal stack pointer!

Format Strings in C

slide 27

%n format symbol tells printf to write the number
of characters that have been printed

… printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address
– This writes 14 into myVar (“Overflow this!” has 14 characters)

What if printf does not have an argument?
… char buf[16]=“Overflow this!%n”;
printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will
be interpreted as address into which the number of characters
will be written!

Writing Stack with Format Strings

slide 28

Using %n to Mung Return Address

RET“… attackString%n”, attack code &RET

Overwrite location under printf’s stack
pointer with RET address;

printf(buffer) will write the number of
characters in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied
input string

Number of characters in
attackString must be

equal to … what?

See “Exploting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols: %Mx will print exactly M bytes (taking them
from the stack). If attackString contains enough “%Mx” so that its total length is equal to the
most significant byte of the address of the attack code, this byte will be written into &RET.

Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, replacing RET
with the address of attack code.

This portion contains
enough % symbols
to advance printf’s

internal stack pointer

slide 29

Configuration parameters
• E.g., directory names that confine remotely invoked

programs to a portion of the server’s file system

Pointers to names of system programs
• For example, replace the name of a harmless script

with an interactive shell
• This is not the same as return-to-libc (why?)

Branch conditions in input validation code

Other Targets of Memory Exploits

slide 30

SSH Authentication Code

Loop until one of
the authentication
methods succeeds

detect_attack() prevents
checksum attack on SSH1…

…and also contains an
overflow bug which permits
the attacker to put any value
into any memory location

write 1 here

Break out of authentication
loop without authenticating
properly

	Buffer Overflow and�Stack Smashing
	Reading Assignment
	A Bit of History: Morris Worm
	Morris Worm and Buffer Overflow
	Famous Buffer Overflow Attacks
	Why Are We Insecure?
	Memory Exploits
	Stack Buffers
	What If Buffer is Overstuffed?
	Executing Attack Code
	Stack Corruption (Redux)
	Attack #1: Return Address
	Buffer Overflow Issues
	Problem: No Range Checking
	Does Range Checking Help?
	Misuse of strncpy in htpasswd “Fix”
	Attack #2: Pointer Variables
	Off-By-One Overflow
	Attack #3: Frame Pointer
	Two’s Complement
	Integer Overflow
	Heap Overflow
	Variable Arguments in C
	Implementation of Variable Args
	Activation Record for Variable Args
	Format Strings in C
	Writing Stack with Format Strings
	Using %n to Mung Return Address
	Other Targets of Memory Exploits
	SSH Authentication Code

