
slide 1

Vitaly Shmatikov

CS 345

Exceptions

slide 2

Reading Assignment

Mitchell, Chapter 8.2

slide 3

Exceptions: Structured Exit

Terminate part of computation
• Jump out of construct
• Pass data as part of jump
• Return to most recent site set up to handle exception
• Unnecessary activation records may be deallocated

– May need to free heap space, other resources

Two main language constructs
• Declaration to establish exception handler
• Statement or expression to raise or throw exception

Often used for unusual or exceptional condition, but not necessarily

slide 4

ML Example

exception Determinant; (* declare exception name *)
fun invert (M) = (* function to invert matrix *)

…
if …

then raise Determinant (* exit if Det=0 *)
else …

end;
...
invert (myMatrix) handle Determinant => … ;

Value for expression if determinant of myMatrix is 0

slide 5

C++ Example

Matrix invert(Matrix m) {
if … throw Determinant;
…

};

try { … invert(myMatrix); …
}
catch (Determinant) { …

// recover from error
}

slide 6

C++ vs ML Exceptions

C++ exceptions
• Can throw any type
• Stroustrup: “I prefer to define types with no other purpose

than exception handling. This minimizes confusion about their
purpose. In particular, I never use a built-in type, such as int, as
an exception.” -- The C++ Programming Language, 3rd ed.

ML exceptions
• Exceptions are a different kind of entity than types
• Declare exceptions before use

Similar, but ML requires what C++ only recommends

slide 7

ML Exceptions

Declaration: exception 〈name〉 of 〈type〉
• Gives name of exception and type of data passed

when this exception is raised

Raise: raise 〈name〉 〈parameters〉
Handler: 〈exp1〉 handle 〈pattern〉 => 〈exp2〉
• Evaluate first expression
• If exception that matches pattern is raised, then

evaluate second expression instead
General form allows multiple patterns

slide 8

Dynamic Scoping of Handlers

exception Ovflw;
fun reciprocal(x) = if x<min then raise Ovflw else 1/x;
(reciprocal(x) handle Ovflw=>0) / (reciprocal(y) handle Ovflw=>1);

– First call to reciprocal() handles exception one way,
second call handles it another way

Dynamic scoping of handlers: in case of
exception, jump to most recently established
handler on run-time stack
Dynamic scoping is not an accident
• User knows how to handle error
• Author of library function does not

slide 9

Exceptions for Error Conditions

- datatype ‘a tree = LF of ‘a | ND of (‘a tree)*(‘a tree)
- exception No_Subtree;
- fun lsub (LF x) = raise No_Subtree
| lsub (ND(x,y)) = x;

> val lsub = fn : ‘a tree -> ‘a tree

• This function raises an exception when there is no
reasonable value to return

– What is its type?

slide 10

Exceptions for Efficiency

Function to multiply values of tree leaves
fun prod(LF x) = x
| prod(ND(x,y)) = prod(x) * prod(y);

Optimize using exception
fun prod(tree) =

let exception Zero
fun p(LF x) = if x=0 then (raise Zero) else x
| p(ND(x,y)) = p(x) * p(y)

in
p(tree) handle Zero=>0

end;

slide 11

Scope of Exception Handlers

exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

scope

handler

Which handler is used?

slide 12

exception X;
fun f(y) = raise X
fun g(h) = h(1) handle X => 2
g(f) handle X => 4

Dynamic Scope of Handlers (1)

formal h
handler X 2

access link

formal y 1
access link

g(f)

f(1)

fun f
access link

access link
fun g

Dynamic scope:

find first X handler,
going up the
dynamic call chain
leading to “raise X”

handler X 4
access link

slide 13

Dynamic Scope of Handlers (2)

exception X;
(let fun f(y) = raise X

and g(h) = h(1) handle X => 2
in

g(f) handle X => 4
end) handle X => 6;

handler X 6

formal h
handler X 2

access link

formal y 1
access link

g(f)

f(1)

fun f
access link

access link
fun g

Dynamic scope:

find first X handler,
going up the
dynamic call chain
leading to “raise X”

handler X 4
access link

slide 14

Scoping: Exceptions vs. Variables

exception X;
(let fun f(y) = raise X

and g(h) = h(1)
handle X => 2

in
g(f) handle X => 4

end) handle X => 6;

val x=6;
(let fun f(y) = x

and g(h) = let val x=2 in
h(1)

in
let val x=4 in g(f)

end);

slide 15

Static Scope of Declarations

val x=6;
(let fun f(y) = x

and g(h) = let val x=2 in
h(1)

in
let val x=4 in g(f)

end);

val x 6

formal h
val x 2

access link

formal y 1
access link

g(f)

f(1)

fun f
access link

access link
fun g

Static scope:

find first x,
following access
links from the
reference to X

val x 4
access link

slide 16

Typing of Exceptions

Typing of raise 〈exn〉
• Definition of typing: expression e has type t if normal

termination of e produces value of type t
• Raising an exception is not normal termination

– Example: 1 + raise X

Typing of handle 〈exception〉 => 〈value〉
• Converts exception to normal termination
• Need type agreement
• Examples

– 1 + ((raise X) handle X => e) Type of e must be int (why?)
– 1 + (e1 handle X => e2) Type of e1,e2 must be int (why?)

slide 17

Exceptions and Resource Allocation

exception X;
(let

val x = ref [1,2,3]
in

let
val y = ref [4,5,6]

in
… raise X

end
end); handle X => ...

Resources may be
allocated between
handler and raise
• Memory, locks on

database, threads …

May be “garbage”
after exception

General problem,
no obvious solution

	Exceptions
	Reading Assignment
	Exceptions: Structured Exit
	ML Example
	C++ Example
	C++ vs ML Exceptions
	ML Exceptions
	Dynamic Scoping of Handlers
	Exceptions for Error Conditions
	Exceptions for Efficiency
	Scope of Exception Handlers
	Dynamic Scope of Handlers (1)
	Dynamic Scope of Handlers (2)
	Scoping: Exceptions vs. Variables
	Static Scope of Declarations
	Typing of Exceptions
	Exceptions and Resource Allocation

