
slide 1

Vitaly Shmatikov

CS 345

Garbage Collection

slide 2

Major Areas of Memory

Static area
• Fixed size, fixed content, allocated at compile time

Run-time stack
• Variable size, variable content (activation records)
• Used for managing function calls and returns

Heap
• Fixed size, variable content
• Dynamically allocated objects and data structures

– Examples: ML reference cells, malloc in C, new in Java

slide 3

Cells and Liveness

Cell = data item in the heap
• Cells are “pointed to” by pointers held in registers,

stack, global/static memory, or in other heap cells

Roots: registers, stack locations, global/static
variables
A cell is live if its address is held in a root or held
by another live cell in the heap

slide 4

Garbage

Garbage is a block of heap memory that cannot
be accessed by the program
• An allocated block of heap memory does not have a

reference to it (cell is no longer “live”)
• Another kind of memory error: a reference exists to a

block of memory that is no longer allocated

Garbage collection (GC) - automatic
management of dynamically allocated storage
• Reclaim unused heap blocks for later use by program

slide 5

Example of Garbage

class node {
int value;
node next;

}
node p, q;

p = new node();
q = new node();
q = p;
delete p;

slide 6

Why Garbage Collection?

Today’s programs consume storage freely
• 1GB laptops, 1-4GB deskops, 8-512GB servers
• 64-bit address spaces (SPARC, Itanium, Opteron)

… and mismanage it
• Memory leaks, dangling references, double free,

misaligned addresses, null pointer dereference, heap
fragmentation

• Poor use of reference locality, resulting in high cache
miss rates and/or excessive demand paging

Explicit memory management breaks high-level
programming abstraction

slide 7

GC and Programming Languages

GC is not a language feature
GC is a pragmatic concern for automatic and
efficient heap management
• Cooperative langs: Lisp, Scheme, Prolog, Smalltalk …
• Uncooperative languages: C and C++

– But garbage collection libraries have been built for C/C++

Recent GC revival
• Object-oriented languages: Modula-3, Java

– In Java, runs as a low-priority thread; System.gc may be called
by the program

• Functional languages: ML and Haskell

slide 8

The Perfect Garbage Collector

No visible impact on program execution
Works with any program and its data structures
• For example, handles cyclic data structures

Collects garbage (and only garbage) cells quickly
• Incremental; can meet real-time constraints

Has excellent spatial locality of reference
• No excessive paging, no negative cache effects

Manages the heap efficiently
• Always satisfies an allocation request and does not

fragment

slide 9

Summary of GC Techniques

Reference counting
• Directly keeps track of live cells
• GC takes place whenever heap block is allocated
• Doesn’t detect all garbage

Tracing
• GC takes place and identifies live cells when a

request for memory fails
• Mark-sweep
• Copy collection

Modern techniques: generational GC

slide 10

Reference Counting

Simply count the number of references to a cell
Requires space and time overhead to store the
count and increment (decrement) each time a
reference is added (removed)
• Reference counts are maintained in real-time, so no

“stop-and-gag” effect
• Incremental garbage collection

Unix file system uses a reference count for files
C++ “smart pointer” (e.g., auto_ptr) use
reference counts

slide 11

Reference Counting: Example

1
root
set

Heap space

2

111

1 12

slide 12

Reference Counting: Strengths

Incremental overhead
• Cell management interleaved with program execution
• Good for interactive or real-time computation

Relatively easy to implement
Can coexist with manual memory management
Spatial locality of reference is good
• Access pattern to virtual memory pages no worse than

the program, so no excessive paging

Can re-use freed cells immediately
• If RC == 0, put back onto the free list

slide 13

Reference Counting: Weaknesses

Space overhead
• 1 word for the count, 1 for an indirect pointer

Time overhead
• Updating a pointer to point to a new cell requires:

– Check to ensure that it is not a self-reference
– Decrement the count on the old cell, possibly deleting it
– Update the pointer with the address of the new cell
– Increment the count on the new cell

One missed increment/decrement results in a
dangling pointer / memory leak
Cyclic data structures may cause leaks

slide 14

Reference Counting: Cycles

1
root
set

Heap space

1

111

1 12

Memory leak

slide 15

T* obj:
int cnt: 2

object of
type T

RefObj<T> *ref

RefObj<T>Ref<T>

RefObj<T> *ref

x

y

sizeof(RefObj<T>) = 8 bytes of overhead per reference-counted object

sizeof(Ref<T>) = 4 bytes
• Fits in a register
• Easily passed by value as an argument or result of a function
• Takes no more space than regular pointer, but much “safer” (why?)

“Smart Pointer” in C++

Similar to std::auto_ptr<T> in ANSI C++

slide 16

Smart Pointer Implementation

template<class T> class RefObj {
T* obj;
int cnt;

public:
RefObj(T* t) : obj(t), cnt(0) {}
~RefObj() { delete obj; }

int inc() { return ++cnt; }
int dec() { return --cnt; }

operator T*() { return obj; }
operator T&() { return *obj; }
T& operator *() { return *obj; }

};

template<class T> class Ref {
RefObj<T>* ref;
Ref<T>* operator&() {}

public:
Ref() : ref(0) {}
Ref(T* p) : ref(new RefObj<T>(p)) { ref->inc();}
Ref(const Ref<T>& r) : ref(r.ref) { ref->inc(); }
~Ref() { if (ref->dec() == 0) delete ref; }

Ref<T>& operator=(const Ref<T>& that) {
if (this != &that) {

if (ref->dec() == 0) delete ref;
ref = that.ref;
ref->inc(); }

return *this; }
T* operator->() { return *ref; }
T& operator*() { return *ref; }

};

slide 17

Using Smart Pointers

Ref<string> proc() {
Ref<string> s = new string(“Hello, world”); // ref count set to 1
…
int x = s->length(); // s.operator->() returns string object ptr
…
return s;

} // ref count goes to 2 on copy out, then 1 when s is auto-destructed

int main()
{

…
Ref<string> a = proc(); // ref count is 1 again
…

} // ref count goes to zero and string is destructed, along with Ref and RefObj objects

slide 18

Mark-Sweep Garbage Collection

Each cell has a mark bit
Garbage remains unreachable and undetected
until heap is used up; then GC goes to work,
while program execution is suspended
Marking phase
• Starting from the roots, set the mark bit on all live cells

Sweep phase
• Return all unmarked cells to the free list
• Reset the mark bit on all marked cells

slide 19

root
set

Heap space

Mark-Sweep Example (1)

slide 20

root
set

Heap space

Mark-Sweep Example (2)

slide 21

root
set

Heap space

Mark-Sweep Example (3)

slide 22

root
set

Heap space

Mark-Sweep Example (4)

Reset mark bit
of marked cells

Free unmarked
cells

slide 23

Mark-Sweep Costs and Benefits

Good: handles cycles correctly
Good: no space overhead
• 1 bit used for marking cells may limit max values that

can be stored in a cell (e.g., for integer cells)

Bad: normal execution must be suspended
Bad: may touch all virtual memory pages
• May lead to excessive paging if the working-set size is

small and the heap is not all in physical memory

Bad: heap may fragment
• Cache misses, page thrashing; more complex allocation

slide 24

Copying Collector

Divide the heap into “from-space” and “to-space”
Cells in from-space are traced and live cells are
copied (“scavenged”) into to-space
• To keep data structures linked, must update pointers

for roots and cells that point into from-space
– This is why references in Java and other languages are not

pointers, but indirect abstractions for pointers

• Only garbage is left in from-space

When to-space fills up, the roles flip
• Old to-space becomes from-space, and vice versa

slide 25

Copying a Linked List

from-space

to-space

root A

C

B

D

forwarding address

pointer

[Cheney’s algorithm]

A’ B’ C’ D’

Cells in to-space
are packed

slide 26

Flipping Spaces

to-space

from-space

forwarding address

pointer

A’ B’ C’ D’

root

slide 27

Copying Collector Tradeoffs

Good: very low cell allocation overhead
• Out-of-space check requires just an addr comparison
• Can efficiently allocate variable-sized cells

Good: compacting
• Eliminates fragmentation, good locality of reference

Bad: twice the memory footprint
• Probably Ok for 64-bit architectures (except for paging)

– When copying, pages of both spaces need to be swapped in.
For programs with large memory footprints, this could lead to
lots of page faults for very little garbage collected

– Large physical memory helps

slide 28

Generational Garbage Collection

Observation: most cells that die, die young
• Nested scopes are entered and exited more

frequently, so temporary objects in a nested scope
are born and die close together in time

• Inner expressions in Scheme are younger than outer
expressions, so they become garbage sooner

Divide the heap into generations, and GC the
younger cells more frequently
• Don’t have to trace all cells during a GC cycle
• Periodically reap the “older generations”
• Amortize the cost across generations

slide 29

Generational Observations

Can measure “youth” by time or by growth rate
Common Lisp: 50-90% of objects die before they
are 10KB old
Glasgow Haskell: 75-95% die within 10KB
• No more than 5% survive beyond 1MB

Standard ML of NJ reclaims over 98% of objects of
any given generation during a collection
C: one study showed that over 1/2 of the heap
was garbage within 10KB and less than 10% lived
for longer than 32KB

slide 30

Young

Old

root
set

A

B

C

D

E

F

G

Example with Immediate “Aging” (1)

slide 31

Young

Old

root
set

A

B

D

E

F

G

C

Example with Immediate “Aging” (2)

slide 32

Youngest

Oldest

To-space

From-space

From-space

To-space

root
set

.

.

.

Middle
generation(s)

Generations with Semi-Spaces

	Garbage Collection
	Major Areas of Memory
	Cells and Liveness
	Garbage
	Example of Garbage
	Why Garbage Collection?
	GC and Programming Languages
	The Perfect Garbage Collector
	Summary of GC Techniques
	Reference Counting
	Reference Counting: Example
	Reference Counting: Strengths
	Reference Counting: Weaknesses
	Reference Counting: Cycles
	“Smart Pointer” in C++
	Smart Pointer Implementation
	Using Smart Pointers
	Mark-Sweep Garbage Collection
	Mark-Sweep Example (1)
	Mark-Sweep Example (2)
	Mark-Sweep Example (3)
	Mark-Sweep Example (4)
	Mark-Sweep Costs and Benefits
	Copying Collector
	Copying a Linked List
	Flipping Spaces
	Copying Collector Tradeoffs
	Generational Garbage Collection
	Generational Observations
	Example with Immediate “Aging” (1)
	Example with Immediate “Aging” (2)
	Generations with Semi-Spaces

