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Major Areas of Memory

Static area
• Fixed size, fixed content, allocated at compile time

Run-time stack
• Variable size, variable content (activation records)
• Used for managing function calls and returns

Heap
• Fixed size, variable content
• Dynamically allocated objects and data structures

– Examples: ML reference cells, malloc in C, new in Java
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Cells and Liveness

Cell = data item in the heap
• Cells are “pointed to” by pointers held in registers, 

stack, global/static memory, or in other heap cells

Roots: registers, stack locations, global/static 
variables
A cell is live if its address is held in a root or held 
by another live cell in the heap
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Garbage

Garbage is a block of heap memory that cannot 
be accessed by the program
• An allocated block of heap memory does not have a 

reference to it (cell is no longer “live”)
• Another kind of memory error: a reference exists to a 

block of memory that is no longer allocated

Garbage collection (GC) - automatic 
management of dynamically allocated storage
• Reclaim unused heap blocks for later use by program



slide 5

Example of Garbage

class node {
int value;
node next;

}
node p, q;

p = new node();
q = new node();
q = p;
delete p;
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Why Garbage Collection?

Today’s programs consume storage freely
• 1GB laptops, 1-4GB deskops, 8-512GB servers
• 64-bit address spaces (SPARC, Itanium, Opteron)

… and mismanage it
• Memory leaks, dangling references, double free, 

misaligned addresses, null pointer dereference, heap 
fragmentation

• Poor use of reference locality, resulting in high cache 
miss rates and/or excessive demand paging

Explicit memory management breaks high-level 
programming abstraction
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GC and Programming Languages

GC is not a language feature
GC is a pragmatic concern for automatic and 
efficient heap management
• Cooperative langs: Lisp, Scheme, Prolog, Smalltalk …
• Uncooperative languages: C and C++

– But garbage collection libraries have been built for C/C++

Recent GC revival
• Object-oriented languages: Modula-3, Java

– In Java, runs as a low-priority thread; System.gc may be called 
by the program

• Functional languages: ML and Haskell
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The Perfect Garbage Collector

No visible impact on program execution
Works with any program and its data structures
• For example, handles cyclic data structures

Collects garbage (and only garbage) cells quickly
• Incremental; can meet real-time constraints

Has excellent spatial locality of reference
• No excessive paging, no negative cache effects

Manages the heap efficiently
• Always satisfies an allocation request and does not 

fragment
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Summary of GC Techniques

Reference counting
• Directly keeps track of live cells
• GC takes place whenever heap block is allocated
• Doesn’t detect all garbage

Tracing
• GC takes place and identifies live cells when a 

request for memory fails
• Mark-sweep
• Copy collection

Modern techniques: generational GC
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Reference Counting

Simply count the number of references to a cell
Requires space and time overhead to store the 
count and increment (decrement) each time a 
reference is added (removed)
• Reference counts are maintained in real-time, so no 

“stop-and-gag” effect
• Incremental garbage collection

Unix file system uses a reference count for files
C++ “smart pointer” (e.g., auto_ptr) use 
reference counts
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Reference Counting: Example
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Reference Counting: Strengths

Incremental overhead
• Cell management interleaved with program execution
• Good for interactive or real-time computation

Relatively easy to implement
Can coexist with manual memory management
Spatial locality of reference is good
• Access pattern to virtual memory pages no worse than 

the program, so no excessive paging

Can re-use freed cells immediately
• If RC == 0, put back onto the free list
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Reference Counting: Weaknesses

Space overhead
• 1 word for the count, 1 for an indirect pointer

Time overhead 
• Updating a pointer to point to a new cell requires:

– Check to ensure that it is not a self-reference
– Decrement the count on the old cell, possibly deleting it
– Update the pointer with the address of the new cell
– Increment the count on the new cell

One missed increment/decrement results in a 
dangling pointer / memory leak
Cyclic data structures may cause leaks
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Reference Counting: Cycles
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T* obj:
int cnt: 2

object of
type T

RefObj<T> *ref

RefObj<T>Ref<T>

RefObj<T> *ref

x

y

sizeof(RefObj<T>) = 8 bytes of overhead per reference-counted object

sizeof(Ref<T>) = 4 bytes
• Fits in a register 
• Easily passed by value as an argument or result of a function
• Takes no more space than regular pointer, but much “safer” (why?)

“Smart Pointer” in C++

Similar to std::auto_ptr<T> in ANSI C++ 
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Smart Pointer Implementation

template<class T> class RefObj {
T* obj; 
int cnt;

public:
RefObj(T* t) : obj(t), cnt(0) {}
~RefObj() { delete obj; }

int inc() { return ++cnt; }
int dec() { return --cnt; }

operator T*() { return obj; }
operator T&() { return *obj; }
T& operator *() { return *obj; }

};

template<class T> class Ref {
RefObj<T>* ref;
Ref<T>* operator&() {} 

public:
Ref() : ref(0) {}
Ref(T* p) : ref(new RefObj<T>(p)) { ref->inc();}
Ref(const Ref<T>& r) : ref(r.ref) { ref->inc(); }
~Ref() { if (ref->dec() == 0) delete ref; }

Ref<T>& operator=(const Ref<T>& that) {
if (this != &that) {

if (ref->dec() == 0) delete ref;
ref = that.ref;
ref->inc(); }

return *this; }
T* operator->() { return *ref; }
T& operator*() { return *ref; }

};
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Using Smart Pointers

Ref<string> proc() {
Ref<string> s = new string(“Hello, world”); // ref count set to 1
…
int x = s->length();  // s.operator->() returns string object ptr
…
return s;

} // ref count goes to 2 on copy out, then 1 when s is auto-destructed

int main()
{ 

…
Ref<string> a = proc();  // ref count is 1 again
…

} // ref count goes to zero and string is destructed, along with Ref and RefObj objects
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Mark-Sweep Garbage Collection

Each cell has a mark bit
Garbage remains unreachable and undetected 
until heap is used up; then GC goes to work, 
while program execution is suspended
Marking phase
• Starting from the roots, set the mark bit on all live cells

Sweep phase
• Return all unmarked cells to the free list
• Reset the mark bit on all marked cells
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root
set

Heap space

Mark-Sweep Example (1)
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root
set

Heap space

Mark-Sweep Example (2)
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root
set

Heap space

Mark-Sweep Example (3)
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root
set

Heap space

Mark-Sweep Example (4)

Reset mark bit
of marked cells

Free unmarked 
cells
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Mark-Sweep Costs and Benefits

Good: handles cycles correctly
Good: no space overhead
• 1 bit used for marking cells may limit max values that 

can be stored in a cell (e.g., for integer cells)

Bad: normal execution must be suspended
Bad: may touch all virtual memory pages
• May lead to excessive paging if the working-set size is 

small and the heap is not all in physical memory

Bad: heap may fragment
• Cache misses, page thrashing; more complex allocation
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Copying Collector

Divide the heap into “from-space” and “to-space”
Cells in from-space are traced and live cells are 
copied (“scavenged”) into to-space
• To keep data structures linked, must update pointers 

for roots and cells that point into from-space
– This is why references in Java and other languages are not 

pointers, but indirect abstractions for pointers

• Only garbage is left in from-space

When to-space fills up, the roles flip
• Old to-space becomes from-space, and vice versa
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Copying a Linked List

from-space

to-space

root A

C

B

D

forwarding address

pointer

[Cheney’s algorithm]

A’ B’ C’ D’

Cells in to-space
are packed
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Flipping Spaces

to-space

from-space

forwarding address

pointer

A’ B’ C’ D’

root
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Copying Collector Tradeoffs

Good: very low cell allocation overhead
• Out-of-space check requires just an addr comparison
• Can efficiently allocate variable-sized cells

Good: compacting
• Eliminates fragmentation, good locality of reference

Bad: twice the memory footprint
• Probably Ok for 64-bit architectures (except for paging)

– When copying, pages of both spaces need to be swapped in. 
For programs with large memory footprints, this could lead to 
lots of page faults for very little garbage collected

– Large physical memory helps
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Generational Garbage Collection

Observation: most cells that die, die young
• Nested scopes are entered and exited more 

frequently, so temporary objects in a nested scope 
are born and die close together in time 

• Inner expressions in Scheme are younger than outer 
expressions, so they become garbage sooner 

Divide the heap into generations, and GC the 
younger cells more frequently
• Don’t have to trace all cells during a GC cycle
• Periodically reap the “older generations”
• Amortize the cost across generations
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Generational Observations

Can measure “youth” by time or by growth rate
Common Lisp: 50-90% of objects die before they 
are 10KB old
Glasgow Haskell: 75-95% die within 10KB
• No more than 5% survive beyond 1MB

Standard ML of NJ reclaims over 98% of objects of 
any given generation during a collection
C: one study showed that over 1/2 of the heap 
was garbage within 10KB and less than 10% lived 
for longer than 32KB
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Example with Immediate “Aging” (1)
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Example with Immediate “Aging” (2)
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Youngest
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Generations with Semi-Spaces
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