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Reading Assignment

Mitchell, Chapter 6
C Reference Manual, Chapters 5 and 6
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Type

A type is a collection of computable values that 
share some structural property

Examples
• Integers
• Strings
• int → bool
• (int → int) →bool

“Non-examples”
• {3, true, λx.x}
• Even integers
• {f:int → int | if x>3   

then f(x) > x*(x+1)}

Distinction between sets that are types and sets that are 
not types is language-dependent
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Uses for Types 

Program organization and documentation
• Separate types for separate concepts

– Represent concepts from problem domain 

• Indicate intended use of declared identifiers
– Types can be checked, unlike program comments

Identify and prevent errors
• Compile-time or run-time checking can prevent 

meaningless computations such as 3 + true - “Bill”

Support optimization
• Example: short integers require fewer bits
• Access record component by known offset
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Operations on Typed Values

Often a type has operations defined on values of 
this type
• Integers: + - / * < > …    Booleans: ∧ ∨ ¬ …

Set of values is usually finite due to internal 
binary representation inside computer
• 32-bit integers in C: –2147483648 to 2147483647
• Addition and subtraction may overflow the finite range, 

so sometimes  a + (b + c) ≠ (a + b) + c

• Exceptions: unbounded fractions in Smalltalk, 
unbounded Integer type in Haskell

• Floating point problems
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Type Errors 

Machine data carries no type information
• 01000000010110000000000000000000 means…
• Floating point value 3.375? 32-bit integer 

1,079,508,992?  Two 16-bit integers 16472 and 0?  
Four ASCII characters @ X NUL NUL?

A type error is any error that arises because an 
operation is attempted on a value of a data type 
for which this operation is undefined
• Historical note: in Fortran and Algol, all of the types 

were built in. If needed a type “color,” could use 
integers, but what does it mean to multiply two colors?
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Static vs. Dynamic Typing

Type system imposes constraints on use of values
• Example: only numeric values can be used in addition
• Cannot be expressed syntactically in EBNF

Language can use static typing
• Types of all variables are fixed at compile time
• Example?

… or dynamic typing
• Type of variable can vary at run time depending on 

value assigned to this variable
• Example?
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Strong vs. Weak Typing

A language is strongly typed if its type system 
allows all type errors in a program to be detected 
either at compile time or at run time
• A strongly typed language can be either statically or 

dynamically typed!

Union types are a hole in the type system of 
many languages (why?)
Most dynamically typed languages associate a 
type with each value
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Compile- vs. Run-Time Checking

Type-checking can be done at compile time
• Examples: C, ML    f(x) must have f : A → B and x : A

… or run time
• Examples: Perl, JavaScript

Java does both
Basic tradeoffs
• Both prevent type errors
• Run-time checking slows down execution
• Compile-time checking restricts program flexibility

– JavaScript array: elements can have different types
– ML list: all elements must have same type 

Which gives better
programmer diagnostics?
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Expressiveness vs. Safety

In JavaScript, we can write function like
function f(x) { return x < 10 ? x : x(); }

Some uses will produce type error, some will not

Static typing always conservative 
if  (big-hairy-boolean-expression) 

then  f(5);
else   f(10);

Cannot decide at compile time if run-time error will 
occur, so can’t define the above function
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Relative Type Safety of Languages 

Not safe: BCPL family, including C and C++
• Casts, pointer arithmetic

Almost safe: Algol family, Pascal, Ada 
• Dangling pointers.

– Allocate a pointer p to an integer, deallocate the memory 
referenced by p, then later use the value pointed to by p 

– No language with explicit deallocation of memory is fully 
type-safe

Safe: Lisp, ML, Smalltalk, JavaScript, and Java 
• Lisp, Smalltalk, JavaScript: dynamically typed 
• ML, Java: statically typed
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Enumeration Types

User-defined set of values
• enum day {Monday, Tuesday, Wednesday,     

Thursday, Friday, Saturday, Sunday};
enum day myDay = Wednesday;

• In C/C++, values of enumeration types are 
represented as integers: 0, ..., 6

More powerful in Java:
• for (day d : day.values())

System.out.println(d);
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Pointers

C, C++, Ada, Pascal
Value is a memory address
• Remember r-values and l-values?

Allows indirect referencing
Pointers in C/C++
• If T is a type and ref T is a pointer: 

& : T → ref T     * : ref T → T      *(&x) = x

Explicit access to memory via pointers can result 
in erroneous code and security vulnerabilities
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Arrays

Example: float x[3][5];
Indexing []
• Type signature: T[ ] x int → T
• In the above example, type of x: float[ ][ ], 

type of x[1]: float[ ], type of x[1][2]: float
Equivalence between arrays and pointers
• a = &a[0]
• If either e1 or e2 is type: ref T, 

then   e1[e2] = *((e1) + (e2))
• Example: a is float[ ] and i int, so  a[i] = *(a + i)
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Strings

Now so fundamental, directly supported by 
languages
C: a string is a one-dimensional character array 
terminated by a NULL character (value = 0)
Java, Perl, Python: a string variable can hold an 
unbounded number of characters
Libraries of string operations and functions
• Standard C string libraries are unsafe!
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Structures

Collection of elements of different types
• Not in Fortran, Algol 60, used first in Cobol, PL/I
• Common to Pascal-like, C-like languages
• Omitted from Java as redundant

struct employeeType {
char name[25];
int age;
float salary;

};
struct employeeType employee;
...
employee.age = 45;
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Unions

union in C, case-variant record in Pascal
Idea: multiple views of same storage

type union =
record 

case b : boolean of
true : (i : integer);
false : (r : real);

end;
var  tagged : union;
begin tagged := (b => false, r => 3.375);

put(tagged.i);  -- error
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Recursive Datatypes

data Value = IntValue Integer | FloatValue Float | 
BoolValue Bool | CharValue Char
deriving (Eq, Ord, Show)

data Expression = Var Variable |  Lit Value |
Binary Op Expression Expression | 
Unary Op Expression
deriving (Eq, Ord, Show)

type Variable = String
type Op = String
type State = [(Variable, Value)]
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Functions as Types

Pascal example:
function newton(a, b: real; function f: real): real;
• Declares that f returns a real value, but the arguments 

to f are unspecified

Java example:
public interface RootSolvable {double valueAt(double x);}
public double Newton(double a, double b, RootSolvable f);
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Type Equivalence

Pascal Report:
“The assignment statement serves to replace the 

current value of a variable with a new value specified 
as an expression ... The variable (or the function) 
and the expression must be of identical type”

Nowhere does it define identical type
• Which of the following types are equivalent?

struct complex { float re, im; };

struct polar { float x, y; };

struct { float re, im; } a, b;

struct complex c,d;   struct polar e;   int f[5], g[10];
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Subtypes

A subtype is a type that has certain constraints 
placed on its values or operations
Can be directly specified in some languages (Ada)
subtype one_to_ten is Integer range 1 .. 10;

Will talk more about subtyping when talking about 
object-oriented programming
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Overloading

An operator or function is overloaded when its 
meaning varies depending on the types of its 
operands or arguments or result
Examples:
• Addition: integers and floating-point values

– Can be mixed: one operand an int, the other floating point
– Also string concatenation in Java

• Class PrintStream in Java:
print, println defined for boolean, char, int, long, 
float, double, char[ ], String, Object
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Function Overloading in C++

Functions that have the same name but can 
take arguments of different types

Tells compiler (not preprocessor) to substitute the code of
the function at the point of invocation
• Saves the overhead of a procedure call
• Preserves scope and type rules as if a function call was made
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Overloading Infix Operators in C++

Cannot change position, associativity or precedence
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Operator Overloading in ML

ML infers which function to use from the type 
of the operands 
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User-Defined Infix Operators in ML

• Precedence is specified by integer values 0-9
– 0 = lowest precedence; left associativity (or else use infixr)
– nonfix turns infix function into a binary prefix function
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Polymorphism and Generics

An operator or function is polymorphic if it can 
be applied to any one of several related types
• Enables code re-use!

Example: generic functions in C++
• Function operates in exactly the same way regardless 

of the type of its arguments

• For each use, compiler substitutes the actual type of 
the arguments for the ‘type’ template parameters

• This is an example of parametric polymorphism
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Polymorphism vs. Overloading

Parametric polymorphism
• Single algorithm may be given many types
• Type variable may be replaced by any type
• f : t→t   ⇒ f : int→int, f : bool→bool, ...

Overloading
• A single symbol may refer to more than one algorithm
• Each algorithm may have different type
• Choice of algorithm determined by type context
• Types of symbol may be arbitrarily different
• + has types int*int→int, real*real→real

Do you see the
difference?
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Type Checking vs. Type Inference

Standard type checking
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };

• Look at the body of each function and use declared 
types of identifiers to check agreement

Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };

• Look at the code without type information and figure 
out what types could have been declared

ML is designed to make type inference tractable
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Motivation

Types and type checking
• Type systems have improved steadily since Algol 60
• Important for modularity, compilation, reliability

Type inference
• Widely regarded as important language innovation
• ML type inference is an illustrative example of a 

flow-insensitive static analysis algorithm
– What does this mean?
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ML Type Inference

Example
- fun f(x) = 2+x;
> val it = fn : int → int

How does this work?
• + has two types: int*int → int, real*real→real
• 2 : int has only one type
• This implies + : int*int → int 
• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type. 
In many cases, unique type may be polymorphic.
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How Does This Work? 

Example
- fun f(x) = 2+x;
> val it = fn : int → int

How does this work?

x 

fun

@

@

+ 2

Assign types to leaves

: t

int → int → int 
real → real→real

: int
Propagate to internal 
nodes and generate 
constraints

int    (t = int)

int→int

t→int   

Solve by substitution

= int→int

Graph for f(x) = 2+x
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Application and Abstraction 

Application
• f must have function type   

domain→range
• Domain of f must be type 

of argument x 
• Result type is range of f

Function expression
• Type is function type 

domain→range

• Domain is type of variable x
• Range is the type of 

function body e 

x

@

f x

fun

e: t: s : s : t

: r    (s = t→ r) : s → t
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Types with Type Variables 

Example
- fun f(g) = g(2);
> val it = fn : (int → t) → t

How does this work?

2 

fun

@

g

Assign types to leaves

: int: sPropagate to internal 
nodes and generate 
constraints

t    (s = int→t)

s→t

Solve by substitution

= (int→t)→t 

Graph for f(g) = g(2)
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Using a Polymorphic Function

Function
- fun f(g) = g(2);
> val it = fn : (int → t) → t

Possible applications
- fun add(x) = 2+x;
> val it = fn : int → int
- f(add);
> val it = 4 : int 

- fun isEven(x) = ...;
> val it = fn : int → bool
- f(isEven);
> val it = true : bool
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Recognizing Type Errors

Function
- fun f(g) = g(2);
> val it = fn : (int → t) → t

Incorrect use
- fun not(x) = if x then false else true;
> val it = fn : bool → bool
- f(not);

Type error: cannot make bool → bool = int → t
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Another Type Inference Example 

Function definition
- fun f(g,x) = g(g(x));
> val it = fn : (t → t)*t → t

Type inference

Solve by substitution

= (v→v)*v→v 
fun

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal 
nodes and generate 
constraints

v     (s = u→v)

s*t→v

u   (s = t→u)

Graph for f(g,x) = g(g(x))
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Polymorphic Datatypes

Datatype with type variable    ’a is syntax for “type variable a”

- datatype ‘a list = nil | cons of ‘a*(‘a list)
> nil : ‘a list 
> cons : ‘a*(‘a list) → ‘a list

Polymorphic function
- fun length nil = 0

|    length (cons(x,rest)) = 1 + length(rest)
>  length : ‘a list → int

Type inference 
• Infer separate type for each clause
• Combine by making two types equal (if necessary)
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Type Inference with Recursion

Second clause
length(cons(x,rest)) = 

1 + length(rest)

Type inference
• Assign types to 

leaves, including 
function name

• Proceed as usual
• Add constraint that 

type of function body 
is equal to the type of 
function name

rest

x

@

length

@

cons

+ 1

@

@

: t

fun
‘a list→int  = t

: ‘a*‘a list→‘a list

Tricky, isn’t it?
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Type Inference Summary

Type of expression computed, not declared
• Does not require type declarations for variables
• Find most general type by solving constraints
• Leads to polymorphism

Static type checking without type specifications
• Idea can be applied to other program properties

Sometimes provides better error detection than 
type checking
• Type may indicate a programming error even if there 

is no type error (how?)
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Costs of Type Inference

More difficult to identify program line that 
causes error
ML requires different syntax for values of 
different types
• integer: 3, real: 3.0

Complications with assignment took years to 
work out



slide 42

Information From Type Inference

An interesting function on lists
fun reverse (nil) = nil
|     reverse (x::lst) = reverse(lst);

Most general type
reverse : ‘a list → ‘b list

What does this mean? 
• Since reversing a list does not change its type, there 

must be an error in the definition of “reverse”

See Koenig paper on course website
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Param. Polymorphism: ML vs. C++

ML polymorphic function
• Declaration has no type information
• Type inference: type expression with variables, then 

substitute for variables as needed

C++ function template
• Declaration gives type of function argument, result
• Place inside template to define type variables
• Function application: type checker does instantiation

ML also has module system with explicit type parameters
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Example: Swap Two Values

ML
- fun swap(x,y) = 

let val z = !x in x := !y; y := z end;
val swap = fn : 'a ref * 'a ref -> unit

C++
template <typename T>
void swap(T& x, T& y){

T tmp = x;  x=y;  y=tmp;
}

Declarations look similar, but compiled very differently
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Implementation

ML
• Swap is compiled into one function
• Typechecker determines how function can be used

C++
• Swap is compiled into linkable format
• Linker duplicates code for each type of use

Why the difference?
• ML reference cell is passed by pointer, local x is a 

pointer to value on heap
• C++ arguments passed by reference (pointer), but 

local x is on stack, size depends on type
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Another Example

C++ polymorphic sort function
template <typename T>
void sort( int count, T * A[count] ) {

for (int i=0; i<count-1; i++)
for (int j=i+1; j<count-1; j++)

if (A[j] < A[i]) swap(A[i],A[j]);
}

What parts of implementation depend on type?
• Indexing into array
• Meaning and implementation of <
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ML Overloading and Type Inference

Some predefined operators are overloaded
User-defined functions must have unique type
- fun plus(x,y) = x+y;
This is compiled to int or real function, not both

Why is a unique type needed?
• Need to compile code ⇒ need to know which +
• Efficiency of type inference
• Aside: general overloading is NP-complete
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Summary 

Types are important in modern languages
• Organize and document the program, prevent errors, 

provide important information to compiler

Type inference
• Determine best type for an expression, based on 

known information about symbols in the expression

Polymorphism
• Single algorithm (function) can have many types

Overloading
• Symbol with multiple meanings, resolved when 

program is compiled
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