
slide 1

Vitaly Shmatikov

CS 345

Concurrent Programming

slide 2

Reading Assignment

Mitchell, Chapter 14

slide 3

Concurrency

Multiprogramming
• Single processor runs

several programs at the
same time

• Each program proceeds
sequentially

• Actions of one program
may occur between two
steps of another

Multiprocessors
• Two or more processors
• Programs on one

processor communicate
with programs on
another

• Actions may happen
simultaneously

Two or more sequences of events occur “in parallel”

Process: sequential program running on a processor

slide 4

The Promise of Concurrency

Speed
• If a task takes time t on one processor, shouldn’t it

take time t/n on n processors?

Availability
• If one process is busy, another may be ready to help

Distribution
• Processors in different locations can collaborate to

solve a problem or work together

Humans do it so why can’t computers?
• Vision, cognition appear to be highly parallel activities

slide 5

Example: Rendering a Web page

Page is a shared resource
Multiple concurrent activities in the Web browser
• Thread for each image load
• Thread for text rendering
• Thread for user input (e.g., “Stop” button)

Cannot all write to page simultaneously!
• Big challenge in concurrent programming: managing

access to shared resources

slide 6

The Challenges of Concurrency

Concurrent programs are harder to get right
• Folklore: need at least an order of magnitude in

speedup for concurrent program to be worth the effort

Some problems are inherently sequential
• Theory – circuit evaluation is P-complete
• Practice – many problems need coordination and

communication among sub-problems

Specific issues
• Communication – send or receive information
• Synchronization – wait for another process to act
• Atomicity – do not stop in the middle and leave a mess

slide 7

Language Support for Concurrency

Threads
• Think of a thread as a system “object” containing the

state of execution of a sequence of function calls
• Each thread needs a separate run-time stack (why?)
• Pass threads as arguments, return as function results

Communication abstractions
• Synchronous communication
• Asynchronous buffers that preserve message order

Concurrency control
• Locking and mutual exclusion
• Atomicity is more abstract, less commonly provided

slide 8

Inter-Process Communication

Processes may need to communicate
• Process requires exclusive access to some resources
• Process need to exchange data with another process

Can communicate via:
• Shared variables
• Message passing
• Parameters

slide 9

Explicit vs. Implicit Concurrency

Explicit concurrency
• Fork or create threads / processes explicitly
• Explicit communication between processes

– Producer computes useful value
– Consumer requests or waits for producer

Implicit concurrency
• Rely on compiler to identify potential parallelism
• Instruction-level and loop-level parallelism can be

inferred, but inferring subroutine-level parallelism
has had less success

slide 10

cobegin / coend

Limited concurrency primitive
– Concurrent Pascal [Per Brinch Hansen, 1970s]

x := 0;
cobegin

begin x := 1; x := x+1 end;
begin x := 2; x := x+1 end;

coend;
print(x);

execute sequential
blocks in parallel

x := 0
x := 2

x := 1

print(x)

x := x+1

x := x+1

Atomicity at level of assignment statement

slide 11

Properties of cobegin/coend

Simple way to create concurrent processes
Communication by shared variables
No mutual exclusion
No atomicity
Number of processes fixed by program structure
Cannot abort processes
• All must complete before parent process can go on

slide 12

Race Conditions

Race condition occurs when the value of a
variable depends on the execution order of two
or more concurrent processes (why is this bad?)
Example
procedure signup(person)

begin
number := number + 1;
list[number] := person;

end;
signup(joe) || signup(bill)

slide 13

Critical Section

Two concurrent processes may access a
shared resource
Inconsistent behavior if processes are
interleaved
Allow only one process in critical section
Issues
• How to select which process is allowed to access

the critical section?
• What happens to the other process?

slide 14

Locks and Waiting

<initialize concurrency control>

Process 1:
<wait>
signup(joe); // critical section
<signal>

Process 2:
<wait>
signup(bill); // critical section
<signal>

Need atomic operations to implement wait

slide 15

Deadlock

Deadlock occurs when a process is waiting for an
event that will never happen
Necessary conditions for a deadlock to exist:
• Processes claim exclusive access to resources
• Processes hold some resources while waiting for others
• Resources may not be removed from waiting processes
• There exists a circular chain of processes in which

each process holds a resource needed by the next
process in the chain

Example: “dining philosophers”

slide 16

Implementing Mutual Exclusion

Atomic test-and-set
• Instruction atomically reads and writes some location
• Common hardware instruction
• Combine with busy-waiting loop to implement mutex

Semaphore
• Keep queue of waiting processes

– Avoid busy-waiting loop

• Scheduler has access to semaphore; process sleeps
• Disable interrupts during semaphore operations

– OK since operations are short

slide 17

Semaphores

Semaphore is an integer variable and an
associated process queue
Operations:
• P(s) if s > 0 then s--

else enqueue process
• V(s) if a process is enqueued then dequeue it

else s++

Binary semaphore
Counting semaphore

slide 18

Simple Producer-Consumer

procedure Producer;
var tmp : string
begin

while (true) do begin
produce(tmp);
P(empty); { begin critical section }
buffer := tmp;
V(full); { end critical section }

end;
end;

procedure Consumer;
var tmp : string

begin
while (true) do begin

P(full); { begin critical section }
tmp := buffer;
V(empty); { end critical section }
consume(tmp);

end;
end;

program SimpleProducerConsumer;
var buffer : string;

full : semaphore = 0;
empty : semaphore = 1;

begin
cobegin

Producer; Consumer;
coend;

end.

slide 19

Producer-Consumer

procedure Producer;
var tmp : string
begin

while (true) do begin
produce(tmp);
P(nonfull);
P(lock); { begin critical section }
inn := inn mod size + 1;
buffer[inn] := tmp;
V(lock); { end critical section }
V(nonempty);

end;
end;

procedure Consumer;
var tmp : string
begin

while (true) do begin
P(nonempty);
P(lock); { begin critical section }
out = out mod size + 1;
tmp := buffer[out];
V(lock); { end critical section }
V(nonfull);
consume(tmp);

end;
end;

program ProducerConsumer;
const size = 5;
var buffer : array[1..size] of string;

inn : integer = 0;
out : integer = 0;
lock : semaphore = 1;
nonfull : semaphore = size;
nonempty : semaphore = 0; …

slide 20

Monitors

Monitor encapsulates a shared resource
(monitor = “synchronized object”)
• Private data
• Set of access procedures (methods)
• Locking is automatic

– At most one process may execute a monitor procedure
at a time (this process is “in” the monitor)

– If one process is in the monitor, any other process that
calls a monitor procedure will be delayed

slide 21

Example of a Monitor

procedure put(s : string);

begin
if (count = size) then wait(nonfull);
in := in mod size + 1;
buffer[in] := tmp;
count := count + 1;
signal(nonempty);

end;

function get : string;
var tmp : string

begin
if (count = 0) then wait(nonempty);
out = out mod size + 1;
tmp := buffer[out];
count := count - 1;
signal(nonfull);
get := tmp;

end;

monitor Buffer;
const size = 5;
var buffer : array[1..size] of string;

in : integer = 0;
out : integer = 0;
count : integer = 0;
nonfull : condition;
nonempty : condition; …

slide 22

Java Threads

Thread
• Set of instructions to be executed one at a time, in a

specified order
• Special Thread class is part of the core language

– In C/C++, threads are part of an “add-on” library

Methods of class Thread
• start : method called to spawn a new thread

– Causes JVM to call run() method on object

• suspend : freeze execution (requires context switch)
• interrupt : freeze and throw exception to thread
• stop : forcibly cause thread to halt

slide 23

java.lang.Thread

Creates execution environment
for the thread
(sets up a separate run-time stack, etc.)

What does
this mean?

slide 24

Methods of Thread Class

slide 25

Runnable Interface

Thread class implements Runnable interface
Single abstract (pure virtual) method run()
public interface Runnable {

public void run(); }

Any implementation of Runnable must provide an
implementation of the run() method
public class ConcurrentReader implements Runnable {

…
public void run() { …

… code here executes concurrently with caller … }
}

slide 26

Two Ways to Start a Thread

Construct a thread with a runnable object
ConcurrReader readerThread = new ConcurrReader();
Thread t = new Thread(readerThread);
t.start(); // calls ConcurrReader.run() automatically

… OR …
Instantiate a subclass of Thread
class ConcurrWriter extends Thread { …

public void run() { … } }
ConcurrWriter writerThread = new ConcurrWriter();
writerThread.start(); // calls ConcurrWriter.run()

slide 27

Why Two Ways?

Java only has single inheritance
Can inherit from some class, but also implement
Runnable interface so that can run as a thread
class X extends Y implements Runnable { …

public synchronized void doSomething() { … }
public void run() { doSomething(); }

}
X obj = new X();
obj.doSomething(); // runs sequentially in current thread
Thread t = new Thread(new X()); // new thread
t.start(); // calls run() which calls doSomething()

slide 28

Interesting “Feature”

Java language specification allows access to
objects that have not been fully constructed
class Broken {

private long x;
Broken() {

new Thread() {
public void run() { x = -1; }

}.start();
x = 0;

} }
Thread created within constructor can access partial object

[Allen Holub, “Taming Java Threads”]

slide 29

Interaction Between Threads

Shared variables and method calls
• Two threads may assign/read the same variable

– Programmer is responsible for avoiding race conditions by
explicit synchronization!

• Two threads may call methods on the same object

Synchronization primitives
• All objects have an internal lock (inherited from Object)
• Synchronized method locks the object

– While it is active, no other thread can execute inside object

• Synchronization operations (inherited from Object)
– Wait: pause current thread until another thread calls Notify
– Notify: wake up waiting thread

slide 30

Synchronized Methods

Provide mutual exclusion
• If a thread calls a synchronized method, object is locked
• If another thread calls a synchronized method on the

same object, this thread blocks until object is unlocked
– Unsynchronized methods can still be called!

“synchronized” is not part of method signature
• Subclass may replace a synchronized method with

unsynchronized method

slide 31

Wait, Notify, NotifyAll

wait() releases object lock, thread waits on internal queue
notify() wakes the highest-priority thread closest to the
front of the object’s internal queue
notifyAll() wakes up all waiting threads
• Threads non-deterministically compete for access to object
• May not be fair (low-priority threads may never get access)

May only be called when object is locked (when is that?)

slide 32

Using Synchronization

public synchronized void consume() {
while (!consumable()) {

wait(); } // release lock and wait for resource
… // have exclusive access to resource, can consume

}

public synchronized void produce() {
… // do something that makes consumable() true
notifyAll(); // tell all waiting threads to try consuming
// can also call notify() and notify one thread at a time

}

slide 33

Example: Shared Queue

slide 34

Example: Producer-Consumer

Method call is synchronous
How do we do this in Java?

Producer

Producer

Producer

Consumer

Buffer Consumer

Consumer

slide 35

[from Jeffrey Smith]

In Pictures

slide 36

Solving Producer-Consumer

Cannot be solved with locks alone
Consumer must wait until buffer is not empty
• While waiting, must sleep (use wait method)
• Need condition recheck loop

Producer must inform waiting consumers when
there is something in the buffer
• Must wake up at least one consumer (use notify

method)

slide 37

Implementation in Stack<T>

public synchronized void produce (T object) {
stack.add(object); notify();

}
public synchronized T consume () {

while (stack.isEmpty()) {
try {

wait();
} catch (InterruptedException e) { }

}
int lastElement = stack.size() - 1;
T object = stack.get(lastElement);
stack.remove(lastElement);
return object; }

Why is loop needed here?

slide 38

Condition Rechecks

Want to wait until condition is true
public synchronized void lock() throws InterruptedException {

if (isLocked) wait();
isLocked = true; }

public synchronized void unLock() {
isLocked = false;
notify(); }

Need a loop because another process may
run instead
public synchronized void lock() throws InterruptedException {

while (isLocked) wait();
isLocked = true; }

slide 39

Nested Monitor Lockout Problem

Wait and notify used within synchronized code
• Purpose: make sure that no other thread has called

method of same object

Wait causes the thread to give up its lock and
sleep until notified
• Allow another thread to obtain lock and continue

processing

Calling a blocking method within a synchronized
method can lead to deadlock

slide 40

Nested Monitor Lockout Example

class Stack {
LinkedList list = new LinkedList();
public synchronized void push(Object x) {
synchronized(list) {

list.addLast(x); notify();
} }
public synchronized Object pop() {
synchronized(list) {

if(list.size() <= 0) wait();
return list.removeLast();

} }
} Releases lock on Stack object but not lock on list;

a push from another thread will deadlock

Could be blocking
method of List class

slide 41

Preventing Nested Monitor Deadlock

No blocking calls in synchronized methods, OR
Provide some nonsynchronized method of the
blocking object

No simple solution that works for all
programming situations

slide 42

Synchronized Blocks

Any Java block can be synchronized
synchronized(obj) {

… mutual exclusion on obj holds inside this block …
}

Synchronized method declaration is just syntactic
sugar for syncronizing the method’s scope
public synchronized void consume() { … body … }
is the same as
public void consume() {

synchronized(this) { … body … }
}

slide 43

Locks Are Recursive

A thread can request to lock an object it has
already locked without causing deadlock
public class Foo {

public void synchronized f() { … }
public void synchronized g() { … f(); … }

}

Foo f = new Foo;
synchronized(f) { … synchronized(f) { … } … }

slide 44

Synchronizing with Join()

Join() waits for thread to terminate
class Future extends Thread {

private int result;
public void run() { result = f(…); }
public int getResult() { return result;}

}
…
Future t = new future;
t.start() // start new thread
…
t.join(); x = t.getResult(); // wait and get result

slide 45

Non-existing

New

Runnable

Blocked Terminated (Dead)

start

create thread object

run method
exits

Non-Existing

garbage collected
and finalization

wait, join notify, notifyAll
thread termination

destroy

destroy

destroy

States of a Java Thread

Thread may not execute
any “finally” clauses,
leave objects locked

slide 46

Concurrent Garbage Collection

Need to stop thread while mark-and-sweeping
• Do other threads need to be stopped?

Problem: objects may change during collection
Solution: prevent read/write to memory area
• Subtle!
• Generational GC distinguishes short-lived and long-

lived objects
• Copying collectors allows reads from old area if

writes are blocked…

slide 47

Limitations of Java 1.4 Primitives

Cannot back off an attempt to acquire a lock
• Can’t give up after waiting for a certain period of time

or after an interrupt

Cannot alter the semantics of a lock
• Reentrancy, read versus write protection, fairness, …

No access control for synchronization
• Any method can do synchronized(obj) on any object

Synchronization limited to block-structured locking
• Can’t acquire a lock in one method, release in another

slide 48

POSIX Threads

Pthreads library for C

slide 49

Example of Using POSIX Threads

Create several
child threads

Wait for children to finish

slide 50

Thread Stacks

slide 51

Java-Style Synchronization in C++

slide 52

Using C++ Threads

slide 53

Thread Safety of Classes

Fields of an object or class must always be in a
valid state, even when used concurrently by
multiple threads
• What’s a “valid state”? Serializability …

Classes are designed so that each method
preserves state invariants on entry and exit
• Example: priority queues represented as sorted lists
• If invariant fails in the middle of a method call,

concurrent execution of another method call will
observe an inconsistent state

slide 54

Example: RGBColor Class

public class RGBColor {
private int r; private int g; private int b;
public RGBColor(int r, int g, int b) {

checkRGBVals(r, g, b);
this.r = r; this.g = g; this.b = b;

}

private static void checkRGBVals(int r, int g, int b) {
if (r < 0 || r > 255 || g < 0 || g > 255 ||

b < 0 || b > 255) {
throw new IllegalArgumentException();

}
}

}

public void setColor(int r, int g, int b) {
checkRGBVals(r, g, b);
this.r = r; this.g = g; this.b = b;

}

public int[] getColor() {
// returns array of three ints: R, G, B
int[] retVal = new int[3];
retVal[0] = r;
retVal[1] = g;
retVal[2] = b;
return retVal;

}

public void invert() {
r = 255 - r; g = 255 - g; b = 255 - b;

}

What goes wrong with
multi-threaded use of this class?

slide 55

Problems with RGBColor Class

Write/write conflicts
• If two threads try to write different colors, result may

be a “mix” of R,G,B from two different colors

Read/write conflicts
• If one thread reads while another writes, the color

that is read may not match the color before or after

slide 56

Making Classes Thread-Safe

Synchronize critical sections
• Make fields private, synchronize access to them

Make objects immutable
• State cannot be changed after object is created

public RGBColor invert() {
RGBColor retVal = new RGBColor(255 - r, 255 - g, 255 - b);
return retVal; }

• Examples: Java String and primitive type wrappers
Integer, Long, Float, etc.

• Pure functions are always re-entrant!

Use a thread-safe wrapper

slide 57

Thread-Safe Wrapper

Define new class which has objects of original
class as fields, provides methods to access them

public synchronized void setColor(int r, int g, int b) {
color.setColor(r, g, b);

}
public synchronized int[] getColor() {

return color.getColor();
}
public synchronized void invert() {

color.invert();
}

slide 58

Comparison

Synchronizing critical sections
• Good way to build thread-safe classes from scratch
• Only way to allow wait() and notify()

Using immutable objects
• Good if objects are small, simple abstract data types
• Benefits: pass without aliasing, unexpected side effects

Using wrapper objects
• Works with existing classes, gives users choice between

thread-safe version and original (unsafe) one
– Example: Java 1.2 collections library – classes not thread-safe,

but some have methods to enclose objects in safe wrapper

slide 59

Why Not Synchronize Everything?

Performance costs
• Current Sun JVM – synchronized methods are 4 to 6

times slower than non-synchronized

Risk of deadlock from too much locking
Unnecessary blocking and unblocking of threads
can reduce concurrency
Alternative: immutable objects
• Issue: often short-lived, increase garbage collection

slide 60

Inheritance Anomaly

Inheritance and concurrency do not mix well
• Inheritance anomaly identified in 1993 (before Java)
• Arises in different languages, to different degrees,

depending on concurrency primitives

Concurrency control in derived classes requires
redefinition of base class and parents
• Concurrency control = synchronization, waiting, etc.

Modification of class requires modifications of
seemingly unrelated features in parent classes

slide 61

Examples of Inheritance Anomaly

Partitioning of acceptable states
• Method can only be entered in certain states

(enforced by base class)
• New method in derived class changes set of states
• Must redefine base class method to check new states

History-sensitive method entry
• New method in derived class can only be called after

other calls
• Must modify existing methods to keep track of history

slide 62

Example: Buffer Class
public class Buffer {

protected Object[] buf; protected int MAX; protected int current = 0;
Buffer(int max) {

MAX = max;
buf = new Object[MAX]; }

public synchronized Object get() throws Exception {
while (current<=0) { wait(); }
current--;
Object ret = buf[current];
notifyAll();
return ret; }

public synchronized void put(Object v) throws Exception {
while (current>=MAX) { wait(); }
buf[current] = v;
current++;
notifyAll(); } }

slide 63

Problems in Derived Class
public class HistoryBuffer extends Buffer {

boolean afterGet = false;
public HistoryBuffer(int max) { super(max); }

public synchronized Object gget() throws Exception {
while ((current<=0)||(!afterGet)) { wait(); }
afterGet = false;
return super.get(); }

public synchronized Object get() throws Exception {
Object o = super.get();
afterGet = true;
return o; }

public synchronized void put(Object v) throws Exception {
super.put(v);
afterGet = false; } }

New method, can be
called only after get

Must be redefined to
keep track of last

method called

Need to redefine to
keep track of last

method called

slide 64

util.concurrent

Doug Lea’s utility classes
• A few general-purpose interfaces
• Implementations tested over several years

Principal interfaces and implementations
• Sync: acquire/release protocols
• Channel: put/take protocols
• Executor: executing Runnable tasks

slide 65

Sync

Main interface for acquire/release protocols
• Used for custom locks, resource management, other

common synchronization idioms
• Coarse-grained interface, doesn’t distinguish different

lock semantics

Implementations
• Mutex, ReentrantLock, Latch, CountDown,

Semaphore, WaiterPreferenceSemaphore,
FIFOSemaphore, PrioritySemaphore

• ObservableSync, LayeredSync to simplify composition
and instrumentation

slide 66

Channel

Main interface for buffers, queues, etc.

Implementations
• LinkedQueue, BoundedLinkedQueue, BoundedBuffer,

BoundedPriorityQueue, SynchronousChannel, Slot

Producer Channel Consumer

put, offer take, poll

slide 67

Executor

Main interface for Thread-like classes
• Pools
• Lightweight execution frameworks
• Custom scheduling

Need only support execute(Runnable r)
• Analogous to Thread.start

Implementations
• PooledExecutor, ThreadedExecutor, QueuedExecutor,

FJTaskRunnerGroup
• Related ThreadFactory class allows most Executors to

use threads with custom attributes

slide 68

java.util.Collection

Adapter-based scheme
• Allow layered synchronization of collection classes

Basic collection classes are unsynchronized
• Example: java.util.ArrayList
• Except for Vector and Hashtable

Anonymous synchronized Adapter classes
• Constructed around the basic classes, e.g.,

List l = Collections.synchronizedList(new ArrayList());

slide 69

Java Memory Model

Multithreaded access to shared memory
• Competitive threads access shared data
• Can lead to data corruption

Memory model determines:
• Which program transformations are allowed

– Should not be too restrictive

• Which program outputs may occur on correct
implementation

– Should not be too generous

• Need semantics for incorrectly synchronized programs

slide 70

Thread

Memory Hierarchy

Thread Cache

Shared
Memory

Cache

code

code

use/assign
load/store

read/write

Old memory model placed complex constraints on read, load, store, etc.

slide 71

Program and Locking Order

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

program
order lock

sync

program
order

[Manson, Pugh]

slide 72

Race Conditions

“Happens-before” order
• Transitive closure of program order and

synchronizes-with order (what does this mean?)
– Program order as written or as compiled and optimized?

Conflict
• An access is a read or a write
• Two accesses conflict if at least one is a write

Race condition
• Two accesses form a data race if they are from

different threads, they conflict, and they are not
ordered by happens-before

slide 73

Races in Action

Northeast Blackout of 2003
• Affected 50 million people in U.S. and Canada

Race condition in alarm management system
caused it to stall, alarms backed up and stalled
both primary and backup server
• “We had in excess of three million online operational

hours in which nothing had ever exercised that bug.
I'm not sure that more testing would have revealed it.”

-- GE Energy's Mike Unum

slide 74

Memory Model Question

How should the compiler and run-time system be
allowed to schedule instructions?
Possible partial answer
• If instruction A occurs in Thread 1 before release of

lock, and B occurs in Thread 2 after acquire of same
lock, then A must be scheduled before B

Does this solve the problem?
• Too restrictive: if no reordering allowed in threads
• Too permissive: if arbitrary reordering in threads
• Compromise: allow local thread reordering that would

be OK for sequential programs

slide 75

Instruction Reordering

Compilers can reorder instructions
• If two instructions are independent, do in any order
• Take advantage of registers, etc.

Correctness for sequential programs
• Observable behavior should be same as if program

instructions were executed in the order written

Sequential consistency for concurrent programs
• If program has no data races, then memory model

should guarantee sequential consistency
• What about programs with races?

– Reasonable programs may have races (need to test, debug, …)

slide 76

Example Program with Data Race

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2start threads

[Manson, Pugh]

Can we end up with i = 0 and j = 0?

slide 77

Sequential Reordering + Data Race

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

OK to reorder
single thread

OK to reorder
single thread

Java definition considers this OK since there is a data race

start threads

[Manson, Pugh]

Can we end up with i = 0 and j = 0? Yes!

slide 78

Allowed Sequential Reordering

“Roach motel” ordering
• Compiler/processor can move accesses into

synchronized blocks
• Can only move them out under special

circumstances, generally not observable

Release only matters to a matching acquire
Special cases:
• Locks on thread local objects are a no-op
• Reentrant locks are a no-op

Java SE 6 (Mustang) optimizes based on this

[Manson, Pugh]

slide 79

Want To Prevent This

Must not result in r1 = r2 = 42
• Imagine if 42 were a reference to an object!

Value appears “out of thin air”
• Causality run amok
• Legal under a simple “happens-before” model of possible behaviors

x = y = 0

r1 = x

y = r1

r2 = y

x = r2

[Manson, Pugh]

slide 80

Summary of Memory Model

Strong guarantees for race-free programs
• Equivalent to interleaved execution that respects

synchronization actions
• Reordering must preserve thread’s sequential semantics

Weaker guarantees for programs with races
• No weird out-of-the-blue program results
• Allows program transformation and optimization

Form of actual memory model definition
• Happens-before memory model
• Additional condition: for every action that occurs, there

must be identifiable cause in the program

slide 81

Example: Concurrent Hash Map

Implements a hash table
• Insert and retrieve data elements by key
• Two items in same bucket placed in linked list

Tricky
“ConcurrentHashMap is both a very useful class for
many concurrent applications and a fine example of a
class that understands and exploits the subtle details
of the Java Memory Model (JMM) to achieve higher
performance. … Use it, learn from it, enjoy it – but
unless you're an expert on Java concurrency, you
probably shouldn't try this on your own.”

slide 82

ConcurrentHashMap

Concurrent operations
• read: no problem
• read/write: OK if different lists
• read/write to same list: clever tricks sometimes avoid locking

Array Linked lists

Data Data Data

Data Data Data

Data Data

Data

slide 83

ConcurrentHashMap Tricks

List cells immutable, except for data field
• Read thread sees a linked list, even if concurrent write in progress

Add to list by inserting at the head
Remove from list: set data field to null, rebuild list to skip
this cell
• Unreachable cells eventually garbage collected

Array Linked lists

Data Data Data

slide 84

Atomicity

Mark block so that compiler and run-time
system will execute it without interaction from
other threads
Advantages
• Simple, powerful correctness property
• Stronger than race freedom (why?)
• Enables sequential reasoning

slide 85

Limitations of Race-Freedom (1)

class Ref {
int i;
void inc() {

int t;
synchronized (this) {
t = i;

}
synchronized (this) {
i = t+1;

}
}
...

}

Ref.inc()
Race-free
Behaves incorrectly in a
multithreaded context

Race freedom does not
prevent errors due to
unexpected interactions
between threads

[Flanaghan]

slide 86

Limitations of Race-Freedom (2)

class Ref {
int i;
void inc() {

int t;
synchronized (this) {
t = i;
i = t+1;

}
}

void read() { return i; }
...

}

Ref.read()
Has a race condition
Behaves correctly in a
multithreaded context

Race freedom is not
necessary to prevent errors
due to unexpected
interactions
between threads

[Flanaghan]

slide 87

Atomicity

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this) {
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {
int tmp = balance;
tmp += x;
balance = tmp;

}}

semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or unfair
scheduling (e.g., disabling interrupts)

[Flanaghan]

slide 88

AtomJava

New prototype from the University of Washington
• Based on source-to-source translation for Java

Atomicity via locking (object ownership)
• Poll for contention and rollback
• No support for parallel readers yet

Key pieces of the implementation
• All writes logged when an atomic block is executed
• If thread is pre-empted in atomic, rollback the thread
• Duplicate so non-atomic code is not slowed by logging
• Smooth interaction with GC

[Grossman]

	Concurrent Programming
	Reading Assignment
	Concurrency
	The Promise of Concurrency
	Example: Rendering a Web page
	The Challenges of Concurrency
	Language Support for Concurrency
	Inter-Process Communication
	Explicit vs. Implicit Concurrency
	cobegin / coend
	Properties of cobegin/coend
	Race Conditions
	Critical Section
	Locks and Waiting
	Deadlock
	Implementing Mutual Exclusion
	Semaphores
	Simple Producer-Consumer
	Producer-Consumer
	Monitors
	Example of a Monitor
	Java Threads
	java.lang.Thread
	Methods of Thread Class
	Runnable Interface
	Two Ways to Start a Thread
	Why Two Ways?
	Interesting “Feature”
	Interaction Between Threads
	Synchronized Methods
	Wait, Notify, NotifyAll
	Using Synchronization
	Example: Shared Queue
	Example: Producer-Consumer
	Slide Number 35
	Solving Producer-Consumer
	Implementation in Stack<T>
	Condition Rechecks
	Nested Monitor Lockout Problem
	Nested Monitor Lockout Example
	Preventing Nested Monitor Deadlock
	Synchronized Blocks
	Locks Are Recursive
	Synchronizing with Join()
	States of a Java Thread
	Concurrent Garbage Collection
	Limitations of Java 1.4 Primitives
	POSIX Threads
	Example of Using POSIX Threads
	Thread Stacks
	Java-Style Synchronization in C++
	Using C++ Threads
	Thread Safety of Classes
	Example: RGBColor Class
	Problems with RGBColor Class
	Making Classes Thread-Safe
	Thread-Safe Wrapper
	Comparison
	Why Not Synchronize Everything?
	Inheritance Anomaly
	Examples of Inheritance Anomaly
	Example: Buffer Class
	Problems in Derived Class
	util.concurrent
	Sync
	Channel
	Executor
	java.util.Collection
	Java Memory Model
	Memory Hierarchy
	Program and Locking Order
	Race Conditions
	Races in Action
	Memory Model Question
	Instruction Reordering
	Example Program with Data Race
	Sequential Reordering + Data Race
	Allowed Sequential Reordering
	Want To Prevent This
	Summary of Memory Model
	Example: Concurrent Hash Map
	ConcurrentHashMap
	ConcurrentHashMap Tricks
	Atomicity
	Limitations of Race-Freedom (1)
	Limitations of Race-Freedom (2)
	Atomicity
	AtomJava

