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Reading Assignment

Mitchell, Chapter 14
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Concurrency 

Multiprogramming
• Single processor runs 

several programs at the 
same time

• Each program proceeds 
sequentially

• Actions of one program 
may occur between two 
steps of another

Multiprocessors
• Two or more processors
• Programs on one 

processor communicate 
with programs on 
another

• Actions may happen 
simultaneously

Two or more sequences of events occur “in parallel”

Process: sequential program running on a processor
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The Promise of Concurrency

Speed
• If a task takes time t on one processor, shouldn’t it 

take time t/n on n processors?

Availability
• If one process is busy, another may be ready to help

Distribution
• Processors in different locations can collaborate to 

solve a problem or work together 

Humans do it so why can’t computers?
• Vision, cognition appear to be highly parallel activities



slide 5

Example: Rendering a Web page

Page is a shared resource
Multiple concurrent activities in the Web browser
• Thread for each image load
• Thread for text rendering
• Thread for user input (e.g., “Stop” button)

Cannot all write to page simultaneously!
• Big challenge in concurrent programming: managing 

access to shared resources
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The Challenges of Concurrency

Concurrent programs are harder to get right
• Folklore: need at least an order of magnitude in 

speedup for concurrent program to be worth the effort  

Some problems are inherently sequential
• Theory – circuit evaluation is P-complete
• Practice – many problems need coordination and 

communication among sub-problems

Specific issues
• Communication – send or receive information
• Synchronization – wait for another process to act
• Atomicity – do not stop in the middle and leave a mess
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Language Support for Concurrency

Threads
• Think of a thread as a system “object” containing the 

state of execution of a sequence of function calls
• Each thread needs a separate run-time stack (why?)
• Pass threads as arguments, return as function results

Communication abstractions
• Synchronous communication
• Asynchronous buffers that preserve message order

Concurrency control
• Locking and mutual exclusion
• Atomicity is more abstract, less commonly provided
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Inter-Process Communication

Processes may need to communicate
• Process requires exclusive access to some resources
• Process need to exchange data with another process

Can communicate via:
• Shared variables
• Message passing
• Parameters
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Explicit vs. Implicit Concurrency

Explicit concurrency
• Fork or create threads / processes explicitly
• Explicit communication between processes

– Producer computes useful value
– Consumer requests or waits for producer

Implicit concurrency
• Rely on compiler to identify potential parallelism
• Instruction-level and loop-level parallelism can be 

inferred, but inferring subroutine-level parallelism 
has had less success
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cobegin / coend

Limited concurrency primitive
– Concurrent Pascal  [Per Brinch Hansen, 1970s]

x := 0;
cobegin

begin x := 1; x := x+1 end;
begin x := 2; x := x+1 end;

coend;
print(x);

execute sequential
blocks in parallel

x := 0
x := 2

x := 1

print(x)

x := x+1

x := x+1

Atomicity at level of assignment statement 
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Properties of cobegin/coend

Simple way to create concurrent processes
Communication by shared variables
No mutual exclusion
No atomicity
Number of processes fixed by program structure
Cannot abort processes
• All must complete before parent process can go on
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Race Conditions

Race condition occurs when the value of a 
variable depends on the execution order of two 
or more concurrent processes (why is this bad?)
Example
procedure signup(person)

begin
number := number + 1;
list[number] := person;

end;
signup(joe) || signup(bill)
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Critical Section

Two concurrent processes may access a 
shared resource
Inconsistent behavior if processes are 
interleaved
Allow only one process in critical section
Issues
• How to select which process is allowed to access 

the critical section?
• What happens to the other process?



slide 14

Locks and Waiting

<initialize concurrency control>

Process 1: 
<wait> 
signup(joe);  // critical section
<signal>

Process 2:
<wait>
signup(bill);   // critical section
<signal>

Need atomic operations to implement wait
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Deadlock

Deadlock occurs when a process is waiting for an 
event that will never happen
Necessary conditions for a deadlock to exist:
• Processes claim exclusive access to resources
• Processes hold some resources while waiting for others
• Resources may not be removed from waiting processes
• There exists a circular chain of processes in which 

each process holds a resource needed by the next 
process in the chain

Example: “dining philosophers”
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Implementing Mutual Exclusion

Atomic test-and-set
• Instruction atomically reads and writes some location
• Common hardware instruction 
• Combine with busy-waiting loop to implement mutex

Semaphore
• Keep queue of waiting processes

– Avoid busy-waiting loop

• Scheduler has access to semaphore; process sleeps
• Disable interrupts during semaphore operations

– OK since operations are short
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Semaphores

Semaphore is an integer variable and an 
associated process queue
Operations:
• P(s)   if s > 0 then s--

else enqueue process
• V(s)   if a process is enqueued then dequeue it 

else s++

Binary semaphore
Counting semaphore
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Simple Producer-Consumer

procedure Producer;
var tmp : string
begin

while (true) do begin
produce(tmp);
P(empty);  { begin critical section }
buffer := tmp;
V(full);   { end critical section }

end;
end;

procedure Consumer;
var tmp : string

begin
while (true) do begin

P(full);   { begin critical section }
tmp := buffer;
V(empty);  { end critical section }
consume(tmp);

end;
end;

program SimpleProducerConsumer;
var buffer : string;

full : semaphore = 0;
empty : semaphore = 1;

begin
cobegin

Producer; Consumer;
coend;

end.
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Producer-Consumer

procedure Producer;
var tmp : string
begin

while (true) do begin
produce(tmp);
P(nonfull);
P(lock);   { begin critical section }
inn := inn mod size + 1;
buffer[inn] := tmp;
V(lock);   { end critical section }
V(nonempty);

end;
end;

procedure Consumer;
var tmp : string
begin

while (true) do begin
P(nonempty);
P(lock);   { begin critical section }
out = out mod size + 1;
tmp := buffer[out];
V(lock);   { end critical section }
V(nonfull);
consume(tmp);

end;
end;

program ProducerConsumer;
const size = 5;
var buffer : array[1..size] of string;

inn    : integer = 0;
out    : integer = 0;
lock   : semaphore = 1;
nonfull : semaphore = size;
nonempty : semaphore = 0;  …
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Monitors

Monitor encapsulates a shared resource 
(monitor = “synchronized object”)
• Private data 
• Set of access procedures (methods)
• Locking is automatic

– At most one process may execute a monitor procedure 
at a time (this process is “in” the monitor)

– If one process is in the monitor, any other process that 
calls a monitor procedure will be delayed
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Example of a Monitor

procedure put(s : string);

begin
if (count = size) then wait(nonfull);
in := in mod size + 1;
buffer[in] := tmp;
count := count + 1;
signal(nonempty);

end;

function get : string;
var tmp : string

begin
if (count = 0) then wait(nonempty);
out = out mod size + 1;
tmp := buffer[out];
count := count - 1;
signal(nonfull);
get := tmp;

end;

monitor Buffer;
const size = 5;
var buffer : array[1..size] of string;

in     : integer = 0;
out    : integer = 0;
count   : integer = 0;
nonfull : condition;
nonempty : condition;  …
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Java Threads

Thread
• Set of instructions to be executed one at a time, in a 

specified order
• Special Thread class is part of the core language

– In C/C++, threads are part of an “add-on” library

Methods of class Thread
• start : method called to spawn a new thread

– Causes JVM to call run() method on object

• suspend : freeze execution (requires context switch)
• interrupt : freeze and throw exception to thread
• stop : forcibly cause thread to halt
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java.lang.Thread

Creates execution environment 
for the thread
(sets up a separate run-time stack, etc.)

What does
this mean?
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Methods of Thread Class
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Runnable Interface

Thread class implements Runnable interface
Single abstract (pure virtual) method run()
public interface Runnable {

public void run(); }

Any implementation of Runnable must provide an 
implementation of the run() method
public class ConcurrentReader implements Runnable {

…
public void run() { …

… code here executes concurrently with caller … } 
}
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Two Ways to Start a Thread

Construct a thread with a runnable object
ConcurrReader readerThread = new ConcurrReader();
Thread t = new Thread(readerThread);
t.start(); // calls ConcurrReader.run() automatically

… OR …
Instantiate a subclass of Thread
class ConcurrWriter extends Thread { …

public void run() { … } }
ConcurrWriter writerThread = new ConcurrWriter();
writerThread.start(); // calls ConcurrWriter.run()
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Why Two Ways?

Java only has single inheritance
Can inherit from some class, but also implement 
Runnable interface so that can run as a thread
class X extends Y implements Runnable { …

public synchronized void doSomething() { … } 
public void run() { doSomething(); }

}
X obj = new X();
obj.doSomething(); // runs sequentially in current thread
Thread t = new Thread(new X()); // new thread
t.start(); // calls run() which calls doSomething()
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Interesting “Feature”

Java language specification allows access to 
objects that have not been fully constructed
class Broken { 

private long x; 
Broken() { 

new Thread() { 
public void run() { x = -1; }

}.start(); 
x = 0;  

} } 
Thread created within constructor can access partial object

[Allen Holub, “Taming Java Threads”] 
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Interaction Between Threads

Shared variables and method calls
• Two threads may assign/read the same variable

– Programmer is responsible for avoiding race conditions by 
explicit synchronization!

• Two threads may call methods on the same object

Synchronization primitives
• All objects have an internal lock (inherited from Object)
• Synchronized method locks the object

– While it is active, no other thread can execute inside object 

• Synchronization operations (inherited from Object)
– Wait: pause current thread until another thread calls Notify
– Notify: wake up waiting thread
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Synchronized Methods

Provide mutual exclusion
• If a thread calls a synchronized method, object is locked
• If another thread calls a synchronized method on the 

same object, this thread blocks until object is unlocked
– Unsynchronized methods can still be called!

“synchronized” is not part of method signature
• Subclass may replace a synchronized method with 

unsynchronized method
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Wait, Notify, NotifyAll

wait() releases object lock, thread waits on internal queue
notify() wakes the highest-priority thread closest to the 
front of the object’s internal queue
notifyAll() wakes up all waiting threads
• Threads non-deterministically compete for access to object 
• May not be fair (low-priority threads may never get access)

May only be called when object is locked (when is that?)
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Using Synchronization

public synchronized void consume() {
while (!consumable()) {

wait(); }    // release lock and wait for resource
…   // have exclusive access to resource, can consume

}

public synchronized void produce() {
… // do something that makes consumable() true
notifyAll(); // tell all waiting threads to try consuming
//  can also call notify() and notify one thread at a time

}
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Example: Shared Queue
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Example: Producer-Consumer

Method call is synchronous
How do we do this in Java?

Producer

Producer

Producer

Consumer

Buffer Consumer

Consumer
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[from Jeffrey Smith]

In Pictures
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Solving Producer-Consumer

Cannot be solved with locks alone
Consumer must wait until buffer is not empty
• While waiting, must sleep (use wait method) 
• Need condition recheck loop

Producer must inform waiting consumers when 
there is something in the buffer 
• Must wake up at least one consumer (use notify 

method)
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Implementation in Stack<T>

public synchronized void produce (T object) {
stack.add(object); notify(); 

} 
public synchronized T consume () { 

while (stack.isEmpty()) { 
try { 

wait(); 
} catch (InterruptedException e) { } 

} 
int lastElement = stack.size() - 1; 
T object = stack.get(lastElement); 
stack.remove(lastElement); 
return object; } 

Why is loop needed here?
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Condition Rechecks

Want to wait until condition is true
public synchronized void lock() throws InterruptedException {

if ( isLocked )  wait();
isLocked = true; }

public synchronized void unLock() {
isLocked = false;
notify(); }

Need a loop because another process may 
run instead
public synchronized void lock() throws InterruptedException {

while ( isLocked ) wait();
isLocked = true; }
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Nested Monitor Lockout Problem

Wait and notify used within synchronized code
• Purpose: make sure that no other thread has called 

method of same object

Wait causes the thread to give up its lock and 
sleep until notified
• Allow another thread to obtain lock and continue 

processing

Calling a blocking method within a synchronized 
method can lead to deadlock
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Nested Monitor Lockout Example

class Stack { 
LinkedList list = new LinkedList(); 
public synchronized void push(Object x) { 
synchronized(list) { 

list.addLast( x ); notify(); 
} } 
public synchronized Object pop() { 
synchronized(list) { 

if( list.size() <= 0 ) wait(); 
return list.removeLast(); 

} } 
} Releases lock on Stack object but not lock on list;

a push from another thread will deadlock

Could be blocking 
method of List class
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Preventing Nested Monitor Deadlock

No blocking calls in synchronized methods, OR
Provide some nonsynchronized method of the 
blocking object 

No simple solution that works for all 
programming situations
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Synchronized Blocks

Any Java block can be synchronized
synchronized(obj) {

… mutual exclusion on obj holds inside this block …
}

Synchronized method declaration is just syntactic 
sugar for syncronizing the method’s scope
public synchronized void consume() { … body … }
is the same as
public void consume() {

synchronized(this) { … body … }
}
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Locks Are Recursive

A thread can request to lock an object it has 
already locked without causing deadlock
public class Foo {

public void synchronized f() { … }
public void synchronized g() { … f(); … }

}

Foo f = new Foo;
synchronized(f) { … synchronized(f) { … } … }
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Synchronizing with Join() 

Join() waits for thread to terminate
class Future extends Thread {

private int result;
public void run() {  result = f(…); }
public int getResult() { return result;}

}
…
Future t = new future;
t.start()                             // start new thread
…
t.join(); x = t.getResult(); // wait and get result
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Non-existing

New

Runnable

Blocked Terminated (Dead)

start

create thread object

run method 
exits

Non-Existing

garbage collected
and finalization

wait, join notify, notifyAll
thread termination

destroy

destroy

destroy

States of a Java Thread

Thread may not execute 
any “finally” clauses, 
leave objects locked
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Concurrent Garbage Collection

Need to stop thread while mark-and-sweeping
• Do other threads need to be stopped?

Problem: objects may change during collection
Solution: prevent read/write to memory area
• Subtle!
• Generational GC distinguishes short-lived and long-

lived objects
• Copying collectors allows reads from old area if 

writes are blocked…
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Limitations of Java 1.4 Primitives

Cannot back off an attempt to acquire a lock
• Can’t give up after waiting for a certain period of time 

or after an interrupt

Cannot alter the semantics of a lock
• Reentrancy, read versus write protection, fairness, …

No access control for synchronization
• Any method can do synchronized(obj) on any object

Synchronization limited to block-structured locking
• Can’t acquire a lock in one method, release in another
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POSIX Threads

Pthreads library for C
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Example of Using POSIX Threads

Create several
child threads

Wait for children to finish
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Thread Stacks
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Java-Style Synchronization in C++
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Using C++ Threads
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Thread Safety of Classes

Fields of an object or class must always be in a 
valid state, even when used concurrently by 
multiple threads
• What’s a “valid state”?  Serializability …

Classes are designed so that each method 
preserves state invariants on entry and exit
• Example: priority queues represented as sorted lists
• If invariant fails in the middle of a method call, 

concurrent execution of another method call will 
observe an inconsistent state
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Example: RGBColor Class

public class RGBColor {
private int r; private int g; private int b;
public RGBColor(int r, int g, int b) {

checkRGBVals(r, g, b);
this.r = r; this.g = g; this.b = b;

}

private static void checkRGBVals(int r, int g, int b) {
if (r < 0 || r > 255 || g < 0 || g > 255 ||

b < 0 || b > 255) {
throw new IllegalArgumentException();

}
}

}

public void setColor(int r, int g, int b) {
checkRGBVals(r, g, b);
this.r = r; this.g = g; this.b = b;

}

public int[] getColor() {    
//  returns array of three ints: R, G, B
int[] retVal = new int[3];
retVal[0] = r; 
retVal[1] = g; 
retVal[2] = b;
return retVal;

}

public void invert() {
r = 255 - r; g = 255 - g; b = 255 - b;

}

What goes wrong with
multi-threaded use of this class?
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Problems with RGBColor Class

Write/write conflicts
• If two threads try to write different colors, result may 

be a “mix” of R,G,B from two different colors

Read/write conflicts
• If one thread reads while another writes, the color 

that is read may not match the color before or after
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Making Classes Thread-Safe

Synchronize critical sections
• Make fields private, synchronize access to them

Make objects immutable 
• State cannot be changed after object is created

public RGBColor invert() { 
RGBColor retVal = new RGBColor(255 - r, 255 - g, 255 - b); 
return retVal; }

• Examples: Java String and primitive type wrappers 
Integer, Long, Float, etc. 

• Pure functions are always re-entrant!

Use a thread-safe wrapper
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Thread-Safe Wrapper

Define new class which has objects of original 
class as fields, provides methods to access them

public synchronized void setColor(int r, int g, int b) {
color.setColor(r, g, b);

}
public synchronized int[] getColor() {

return color.getColor();
}
public synchronized void invert() {

color.invert();
}
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Comparison 

Synchronizing critical sections
• Good way to build thread-safe classes from scratch
• Only way to allow wait() and notify()

Using immutable objects
• Good if objects are small, simple abstract data types
• Benefits: pass without aliasing, unexpected side effects

Using wrapper objects
• Works with existing classes, gives users choice between 

thread-safe version and original (unsafe) one
– Example: Java 1.2 collections library – classes not thread-safe, 

but some have methods to enclose objects in safe wrapper
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Why Not Synchronize Everything?

Performance costs
• Current Sun JVM – synchronized methods are 4 to 6 

times slower than non-synchronized

Risk of deadlock from too much locking
Unnecessary blocking and unblocking of threads 
can reduce concurrency
Alternative: immutable objects 
• Issue: often short-lived, increase garbage collection
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Inheritance Anomaly

Inheritance and concurrency do not mix well
• Inheritance anomaly identified in 1993 (before Java)
• Arises in different languages, to different degrees, 

depending on concurrency primitives

Concurrency control in derived classes requires 
redefinition of base class and parents
• Concurrency control = synchronization, waiting, etc.

Modification of class requires modifications of 
seemingly unrelated features in parent classes
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Examples of Inheritance Anomaly

Partitioning of acceptable states
• Method can only be entered in certain states 

(enforced by base class)
• New method in derived class changes set of states
• Must redefine base class method to check new states

History-sensitive method entry
• New method in derived class can only be called after 

other calls
• Must modify existing methods to keep track of history
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Example: Buffer Class
public class Buffer {

protected Object[] buf;      protected int MAX;    protected int current = 0;
Buffer(int max) {

MAX = max;
buf = new Object[MAX]; }

public synchronized Object get()  throws Exception {
while (current<=0) { wait(); }
current--;
Object ret = buf[current];
notifyAll();
return ret; }

public synchronized void put(Object v) throws Exception {
while (current>=MAX) { wait(); }
buf[current] = v;
current++;
notifyAll(); } }
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Problems in Derived Class 
public class HistoryBuffer extends Buffer {

boolean afterGet = false;
public HistoryBuffer(int max) { super(max); }

public synchronized Object gget()  throws Exception {
while ((current<=0)||(!afterGet)) { wait(); }
afterGet = false;
return super.get(); }

public synchronized Object get()  throws Exception {
Object o = super.get();
afterGet = true;
return o; }

public synchronized void put(Object v) throws Exception {
super.put(v);
afterGet = false; } }

New method, can be 
called only after get

Must be redefined to 
keep track of last 

method called

Need to redefine to 
keep track of last 

method called
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util.concurrent

Doug Lea’s utility classes
• A few general-purpose interfaces
• Implementations tested over several years

Principal interfaces and implementations
• Sync: acquire/release protocols
• Channel: put/take protocols
• Executor: executing Runnable tasks
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Sync

Main interface for acquire/release protocols
• Used for custom locks, resource management, other 

common synchronization idioms
• Coarse-grained interface, doesn’t distinguish different 

lock semantics

Implementations
• Mutex, ReentrantLock, Latch, CountDown, 

Semaphore, WaiterPreferenceSemaphore, 
FIFOSemaphore, PrioritySemaphore

• ObservableSync, LayeredSync to simplify composition 
and instrumentation
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Channel

Main interface for buffers, queues, etc.

Implementations
• LinkedQueue, BoundedLinkedQueue, BoundedBuffer, 

BoundedPriorityQueue, SynchronousChannel, Slot

Producer Channel Consumer

put, offer take, poll
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Executor

Main interface for Thread-like classes
• Pools
• Lightweight execution frameworks
• Custom scheduling

Need only support execute(Runnable r)
• Analogous to Thread.start

Implementations
• PooledExecutor, ThreadedExecutor, QueuedExecutor, 

FJTaskRunnerGroup
• Related ThreadFactory class allows most Executors to 

use threads with custom attributes



slide 68

java.util.Collection

Adapter-based scheme 
• Allow layered synchronization of collection classes

Basic collection classes are unsynchronized
• Example: java.util.ArrayList 
• Except for Vector and Hashtable

Anonymous synchronized Adapter classes
• Constructed around the basic classes, e.g.,

List l = Collections.synchronizedList(new ArrayList());
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Java Memory Model

Multithreaded access to shared memory 
• Competitive threads access shared data
• Can lead to data corruption

Memory model determines:
• Which program transformations are allowed

– Should not be too restrictive

• Which program outputs may occur on correct 
implementation

– Should not be too generous

• Need semantics for incorrectly synchronized programs
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Thread

Memory Hierarchy

Thread Cache

Shared 
Memory

Cache

code

code

use/assign
load/store

read/write

Old memory model placed complex constraints on read, load, store, etc.
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Program and Locking Order

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

program
order lock

sync

program
order

[Manson, Pugh]
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Race Conditions 

“Happens-before” order
• Transitive closure of program order and 

synchronizes-with order (what does this mean?)
– Program order as written or as compiled and optimized?

Conflict
• An access is a read or a write
• Two accesses conflict if at least one is a write

Race condition
• Two accesses form a data race if they are from 

different threads, they conflict, and they are not 
ordered by happens-before
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Races in Action

Northeast Blackout of 2003
• Affected 50 million people in U.S. and Canada

Race condition in alarm management system 
caused it to stall, alarms backed up and stalled 
both primary and backup server
• “We had in excess of three million online operational 

hours in which nothing had ever exercised that bug. 
I'm not sure that more testing would have revealed it.”

-- GE Energy's Mike Unum 
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Memory Model Question

How should the compiler and run-time system be 
allowed to schedule instructions?
Possible partial answer
• If instruction A occurs in Thread 1 before release of 

lock, and B occurs in Thread 2 after acquire of same 
lock, then A must be scheduled before B

Does this solve the problem?
• Too restrictive: if no reordering allowed in threads
• Too permissive: if arbitrary reordering in threads
• Compromise: allow local thread reordering that would 

be OK for sequential programs
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Instruction Reordering

Compilers can reorder instructions
• If two instructions are independent, do in any order
• Take advantage of registers, etc.

Correctness for sequential programs
• Observable behavior should be same as if program 

instructions were executed in the order written

Sequential consistency for concurrent programs
• If program has no data races, then memory model 

should guarantee sequential consistency
• What about programs with races?

– Reasonable programs may have races (need to test, debug, …) 
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Example Program with Data Race

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2start threads

[Manson, Pugh]

Can we end up with i = 0 and j = 0?
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Sequential Reordering + Data Race

x = y = 0

x = 1

j = y

Thread 1

y = 1

i = x

Thread 2

OK to reorder 
single thread

OK to reorder 
single thread

Java definition considers this OK since there is a data race

start threads

[Manson, Pugh]

Can we end up with i = 0 and j = 0? Yes!
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Allowed Sequential Reordering

“Roach motel” ordering
• Compiler/processor can move accesses into 

synchronized blocks
• Can only move them out under special 

circumstances, generally not observable

Release only matters to a matching acquire
Special cases:
• Locks on thread local objects are a no-op
• Reentrant locks are a no-op

Java SE 6 (Mustang) optimizes based on this

[Manson, Pugh]
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Want To Prevent This

Must not result in r1 = r2 = 42
• Imagine if 42 were a reference to an object!

Value appears “out of thin air”
• Causality run amok
• Legal under a simple “happens-before” model of possible behaviors

x = y = 0

r1 = x

y = r1

r2 = y

x = r2

[Manson, Pugh]
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Summary of Memory Model

Strong guarantees for race-free programs
• Equivalent to interleaved execution that respects 

synchronization actions
• Reordering must preserve thread’s sequential semantics 

Weaker guarantees for programs with races
• No weird out-of-the-blue program results
• Allows program transformation and optimization 

Form of actual memory model definition
• Happens-before memory model
• Additional condition: for every action that occurs, there 

must be identifiable cause in the program
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Example: Concurrent Hash Map

Implements a hash table
• Insert and retrieve data elements by key
• Two items in same bucket placed in linked list

Tricky
“ConcurrentHashMap is both a very useful class for 
many concurrent applications and a fine example of a 
class that understands and exploits the subtle details 
of the Java Memory Model (JMM) to achieve higher 
performance.  … Use it, learn from it, enjoy it – but 
unless you're an expert on Java concurrency,  you 
probably shouldn't try this on your own.”
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ConcurrentHashMap

Concurrent operations
• read: no problem
• read/write: OK if different lists
• read/write to same list: clever tricks sometimes avoid locking

Array Linked lists

Data Data Data

Data Data Data

Data Data

Data
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ConcurrentHashMap Tricks

List cells immutable, except for data field
• Read thread sees a linked list, even if concurrent write in progress

Add to list by inserting at the head
Remove from list: set data field to null, rebuild list to skip 
this cell
• Unreachable cells eventually garbage collected

Array Linked lists

Data Data Data
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Atomicity

Mark block so that compiler and run-time 
system will execute it without interaction from 
other threads
Advantages
• Simple, powerful correctness property
• Stronger than race freedom (why?)
• Enables sequential reasoning
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Limitations of Race-Freedom (1)

class Ref {
int i;
void inc() {

int t;
synchronized (this) {
t = i; 

}
synchronized (this) {
i = t+1; 

}
}
...

}

Ref.inc()
Race-free
Behaves incorrectly in a 
multithreaded context

Race freedom does not
prevent errors due to 
unexpected interactions
between threads

[Flanaghan]
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Limitations of Race-Freedom (2)

class Ref {
int i;
void inc() {

int t;
synchronized (this) { 
t = i; 
i = t+1; 

}
}

void read() { return i; }
...

}

Ref.read() 
Has a race condition
Behaves correctly in a 
multithreaded context

Race freedom is not 
necessary to prevent errors 
due to unexpected 
interactions
between threads

[Flanaghan]
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Atomicity

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this) {
int tmp = balance;
tmp += x;
balance = tmp;

}}

void deposit(int x){
atomic {
int tmp = balance;
tmp += x;
balance = tmp; 

}}

semantics: 
lock acquire/release

semantics: 
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or unfair 
scheduling (e.g., disabling interrupts)

[Flanaghan]
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AtomJava

New prototype from the University of Washington 
• Based on source-to-source translation for Java

Atomicity via locking (object ownership)
• Poll for contention and rollback
• No support for parallel readers yet

Key pieces of the implementation
• All writes logged when an atomic block is executed
• If thread is pre-empted in atomic, rollback the thread 
• Duplicate so non-atomic code is not slowed by logging
• Smooth interaction with GC

[Grossman]
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