
slide 1

Vitaly Shmatikov

CS 345

Lambda-Calculus



slide 2

Reading Assignment

Mitchell, Chapter 4.2



slide 3

Lambda Calculus

Formal system with three parts
• Notation for function expressions
• Proof system for equations
• Calculation rules called reduction

Additional topics in lambda calculus
• Mathematical semantics
• Type systems



slide 4

History

Origins: formal theory of substitution
• For first-order logic, etc.

More successful for computable functions
• Substitution → symbolic computation
• Church/Turing thesis

Influenced design of Lisp, ML, other languages
Important part of CS history and foundations



slide 5

Why Study Lambda-Calculus?

Basic syntactic notions
• Free and bound variables
• Functions
• Declarations

Calculation rule
• Symbolic evaluation useful for discussing programs
• Used in optimization (inlining), macro expansion

– Correct macro processing requires variable renaming

• Illustrates some ideas about scope of binding
– Lisp originally departed from standard lambda calculus, 

returned to the fold through Scheme, Common Lisp



slide 6

Expressions and Functions

Expressions
x + y             x + 2*y + z

Functions
λx. (x+y)         λz. (x + 2*y + z)

Application
(λx. (x+y)) 3                =  3 + y
(λz. (x + 2*y + z)) 5     =  x + 2*y + 5

Parsing:  λx. f (f x) = λx.( f (f (x)) )



slide 7

Higher-Order Functions

Given function f, return function f ° f
λf.  λx. f (f x)

How does this work?

(λf.  λx. f (f x))  (λy. y+1)

=  λx. (λy. y+1) ((λy. y+1)  x)

=  λx. (λy. y+1) (x+1)

=  λx. (x+1)+1

Same result if step 2 is altered



slide 8

Same Procedure (ML)

Given function f, return function f ° f
fn f => fn x => f(f(x))

How does this work?
(fn f => fn x => f(f(x))) (fn y => y + 1)

= fn x => ((fn y => y + 1) ((fn y => y + 1) x))

= fn x => ((fn y => y + 1) (x + 1)) 

= fn x => ((x + 1) + 1)



slide 9

Same Procedure (JavaScript)

Given function f, return function f ° f
function (f) { return function (x) { return f(f(x)); } ; }

How does this work?

(function (f) { return function (x) { return f(f(x)); } ;  })
(function (y) { return y + 1; })

function (x) { return (function (y) { return y + 1; })
((function (y) { return y + 1; }) (x)); }

function (x) { return (function (y) { return y +1; }) (x + 1); }

function (x) { return ((x + 1) + 1); }



slide 10

Declarations as “Syntactic Sugar”

function f(x) {
return x+2;

}
f(5);

block body declared function

(λf.  f(5))  (λx. x+2)



slide 11

Free and Bound Variables

Bound variable is a “placeholder”
• Variable x is bound in λx. (x+y) 
• Function λx. (x+y) is same function as λz. (z+y) 

Compare
∫ x+y dx  =  ∫ z+y dz       ∀x  P(x) = ∀z  P(z)  

Name of free (i.e., unbound) variable matters!
• Variable y is free in λx. (x+y) 
• Function λx. (x+y) is not same as λx. (x+z)

Occurrences
• y is free and bound in   λx. ((λy. y+2) x) + y



slide 12

Reduction

Basic computation rule is β-reduction
(λx. e1) e2 → [e2/x]e1

where substitution involves renaming as needed (why?)

Reduction
• Apply basic computation rule to any subexpression
• Repeat 

Confluence
• Final result (if there is one) is uniquely determined



slide 13

Renaming Bound Variables

Function application
(λf.  λx. f (f x))  (λy. y+x)

apply twice add x to argument

Substitute “blindly” – do you see the problem?
λx. [(λy. y+x) ((λy. y+x) x)] =  λx. x+x+x  

Rename bound variables
(λf.  λz. f (f z))  (λy. y+x)

=  λz. [(λy. y+x) ((λy. y+x) z))] =  λz. z+x+x  

Easy rule: always rename variables to be distinct



slide 14

Main Points About Lambda Calculus

λ captures  the “essence” of variable binding
• Function parameters
• Declarations
• Bound variables can be renamed

Succinct function expressions
Simple symbolic evaluator via substitution
Can be extended with
• Types, various functions, stores and side effects…



slide 15

What is a Functional Language?

“No side effects”
Pure functional language: a language with 
functions, but without side effects or other 
imperative features



slide 16

No-Side-Effects Language Test

Within the scope of specific declarations of x1,x2, …, xn, 
all occurrences of an expression e containing only 
variables x1,x2, …, xn, must have the same value.

begin
integer x=3; integer y=4;
5*(x+y)-3    
…              // no new declaration of x or y //
4*(x+y)+1

end



slide 17

Backus’ Turing Award

John Backus: 1977 Turing Award
• Designer of Fortran, BNF, etc.

Turing Award lecture
• Functional programming better than imperative 

programming
• Easier to reason about functional programs
• More efficient due to parallelism
• Algebraic laws 

– Reason about programs
– Optimizing compilers



slide 18

Reasoning About Programs

To prove a program correct, must consider 
everything a program depends on
In functional programs, dependence on any 
data structure is explicit (why?)
Therefore, it’s easier to reason about functional 
programs
Do you believe this?



slide 19

Quicksort in Haskell

Very succinct program
qsort [] = [] 
qsort (x:xs) = qsort elts_lt_x ++ [x] 

++ qsort elts_greq_x 
where elts_lt_x = [y | y <- xs, y < x] 

elts_greq_x = [y | y <- xs, y >= x] 

This is the whole thing
• No assignment – just write expression for sorted list
• No array indices, no pointers, no memory 

management, …



slide 20

Compare: Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo; 
{ int h, l, p, t; 

if (lo < hi) { 
l = lo; h = hi; p = a[hi]; 
do { 

while ((l < h) && (a[l] <= p)) l = l+1; 
while ((h > l) && (a[h] >= p)) h = h-1;
if (l < h) { t = a[l]; a[l] = a[h]; a[h] = t; } 

} while (l < h); 
t = a[l]; a[l] = a[hi]; a[hi] = t; 
qsort( a, lo, l-1 ); 
qsort( a, l+1, hi ); 

} 
} 



slide 21

Case Study

Naval Center programming experiment
• Separate teams worked on separate languages

Some programs were incomplete or did not run
• Many evaluators didn’t understand, when shown the 

code, that the Haskell program was complete. They 
thought it was a high-level partial specification.

[Hudak and Jones, Yale TR, 1994]



slide 22

Von Neumann Bottleneck

Von Neumann
• Mathematician responsible for idea of stored program

Von Neumann bottleneck
• Backus’ term for limitation in CPU-memory transfer

Related to sequentiality of imperative languages
• Code must be executed in specific order

function f(x) { if (x<y) then y = x; else x = y; }
g( f(i), f(j) );



slide 23

Eliminating VN Bottleneck

No side effects
• Evaluate subexpressions independently

– function  f(x)  { return x<y ? 1 : 2; }
– g(f(i), f(j), f(k), … );

Good idea but ...
• Too much parallelism
• Little help in allocation of processors to processes
• ... 

Effective, easy concurrency is a hard problem


	Lambda-Calculus
	Reading Assignment
	Lambda Calculus
	History
	Why Study Lambda-Calculus?
	Expressions and Functions
	Higher-Order Functions
	Same Procedure (ML)
	Same Procedure (JavaScript)
	Declarations as “Syntactic Sugar”
	Free and Bound Variables
	Reduction
	Renaming Bound Variables
	Main Points About Lambda Calculus
	What is a Functional Language?
	No-Side-Effects Language Test
	Backus’ Turing Award
	Reasoning About Programs
	Quicksort in Haskell
	Compare: Quicksort in C
	Case Study
	Von Neumann Bottleneck
	Eliminating VN Bottleneck

