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Reading Assignment

Mitchell, Chapter 4.2
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Lambda Calculus

Formal system with three parts
• Notation for function expressions
• Proof system for equations
• Calculation rules called reduction

Additional topics in lambda calculus
• Mathematical semantics
• Type systems
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History

Origins: formal theory of substitution
• For first-order logic, etc.

More successful for computable functions
• Substitution → symbolic computation
• Church/Turing thesis

Influenced design of Lisp, ML, other languages
Important part of CS history and foundations
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Why Study Lambda-Calculus?

Basic syntactic notions
• Free and bound variables
• Functions
• Declarations

Calculation rule
• Symbolic evaluation useful for discussing programs
• Used in optimization (inlining), macro expansion

– Correct macro processing requires variable renaming

• Illustrates some ideas about scope of binding
– Lisp originally departed from standard lambda calculus, 

returned to the fold through Scheme, Common Lisp
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Expressions and Functions

Expressions
x + y             x + 2*y + z

Functions
λx. (x+y)         λz. (x + 2*y + z)

Application
(λx. (x+y)) 3                =  3 + y
(λz. (x + 2*y + z)) 5     =  x + 2*y + 5

Parsing:  λx. f (f x) = λx.( f (f (x)) )
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Higher-Order Functions

Given function f, return function f ° f
λf.  λx. f (f x)

How does this work?

(λf.  λx. f (f x))  (λy. y+1)

=  λx. (λy. y+1) ((λy. y+1)  x)

=  λx. (λy. y+1) (x+1)

=  λx. (x+1)+1

Same result if step 2 is altered
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Same Procedure (ML)

Given function f, return function f ° f
fn f => fn x => f(f(x))

How does this work?
(fn f => fn x => f(f(x))) (fn y => y + 1)

= fn x => ((fn y => y + 1) ((fn y => y + 1) x))

= fn x => ((fn y => y + 1) (x + 1)) 

= fn x => ((x + 1) + 1)
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Same Procedure (JavaScript)

Given function f, return function f ° f
function (f) { return function (x) { return f(f(x)); } ; }

How does this work?

(function (f) { return function (x) { return f(f(x)); } ;  })
(function (y) { return y + 1; })

function (x) { return (function (y) { return y + 1; })
((function (y) { return y + 1; }) (x)); }

function (x) { return (function (y) { return y +1; }) (x + 1); }

function (x) { return ((x + 1) + 1); }
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Declarations as “Syntactic Sugar”

function f(x) {
return x+2;

}
f(5);

block body declared function

(λf.  f(5))  (λx. x+2)
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Free and Bound Variables

Bound variable is a “placeholder”
• Variable x is bound in λx. (x+y) 
• Function λx. (x+y) is same function as λz. (z+y) 

Compare
∫ x+y dx  =  ∫ z+y dz       ∀x  P(x) = ∀z  P(z)  

Name of free (i.e., unbound) variable matters!
• Variable y is free in λx. (x+y) 
• Function λx. (x+y) is not same as λx. (x+z)

Occurrences
• y is free and bound in   λx. ((λy. y+2) x) + y
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Reduction

Basic computation rule is β-reduction
(λx. e1) e2 → [e2/x]e1

where substitution involves renaming as needed (why?)

Reduction
• Apply basic computation rule to any subexpression
• Repeat 

Confluence
• Final result (if there is one) is uniquely determined
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Renaming Bound Variables

Function application
(λf.  λx. f (f x))  (λy. y+x)

apply twice add x to argument

Substitute “blindly” – do you see the problem?
λx. [(λy. y+x) ((λy. y+x) x)] =  λx. x+x+x  

Rename bound variables
(λf.  λz. f (f z))  (λy. y+x)

=  λz. [(λy. y+x) ((λy. y+x) z))] =  λz. z+x+x  

Easy rule: always rename variables to be distinct
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Main Points About Lambda Calculus

λ captures  the “essence” of variable binding
• Function parameters
• Declarations
• Bound variables can be renamed

Succinct function expressions
Simple symbolic evaluator via substitution
Can be extended with
• Types, various functions, stores and side effects…
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What is a Functional Language?

“No side effects”
Pure functional language: a language with 
functions, but without side effects or other 
imperative features
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No-Side-Effects Language Test

Within the scope of specific declarations of x1,x2, …, xn, 
all occurrences of an expression e containing only 
variables x1,x2, …, xn, must have the same value.

begin
integer x=3; integer y=4;
5*(x+y)-3    
…              // no new declaration of x or y //
4*(x+y)+1

end
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Backus’ Turing Award

John Backus: 1977 Turing Award
• Designer of Fortran, BNF, etc.

Turing Award lecture
• Functional programming better than imperative 

programming
• Easier to reason about functional programs
• More efficient due to parallelism
• Algebraic laws 

– Reason about programs
– Optimizing compilers
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Reasoning About Programs

To prove a program correct, must consider 
everything a program depends on
In functional programs, dependence on any 
data structure is explicit (why?)
Therefore, it’s easier to reason about functional 
programs
Do you believe this?
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Quicksort in Haskell

Very succinct program
qsort [] = [] 
qsort (x:xs) = qsort elts_lt_x ++ [x] 

++ qsort elts_greq_x 
where elts_lt_x = [y | y <- xs, y < x] 

elts_greq_x = [y | y <- xs, y >= x] 

This is the whole thing
• No assignment – just write expression for sorted list
• No array indices, no pointers, no memory 

management, …
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Compare: Quicksort in C

qsort( a, lo, hi ) int a[], hi, lo; 
{ int h, l, p, t; 

if (lo < hi) { 
l = lo; h = hi; p = a[hi]; 
do { 

while ((l < h) && (a[l] <= p)) l = l+1; 
while ((h > l) && (a[h] >= p)) h = h-1;
if (l < h) { t = a[l]; a[l] = a[h]; a[h] = t; } 

} while (l < h); 
t = a[l]; a[l] = a[hi]; a[hi] = t; 
qsort( a, lo, l-1 ); 
qsort( a, l+1, hi ); 

} 
} 
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Case Study

Naval Center programming experiment
• Separate teams worked on separate languages

Some programs were incomplete or did not run
• Many evaluators didn’t understand, when shown the 

code, that the Haskell program was complete. They 
thought it was a high-level partial specification.

[Hudak and Jones, Yale TR, 1994]
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Von Neumann Bottleneck

Von Neumann
• Mathematician responsible for idea of stored program

Von Neumann bottleneck
• Backus’ term for limitation in CPU-memory transfer

Related to sequentiality of imperative languages
• Code must be executed in specific order

function f(x) { if (x<y) then y = x; else x = y; }
g( f(i), f(j) );
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Eliminating VN Bottleneck

No side effects
• Evaluate subexpressions independently

– function  f(x)  { return x<y ? 1 : 2; }
– g(f(i), f(j), f(k), … );

Good idea but ...
• Too much parallelism
• Little help in allocation of processors to processes
• ... 

Effective, easy concurrency is a hard problem
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