Lambda-Calculus

Vitaly Shmatikov

Reading Assignment

Mitchell, Chapter 4.2

Lambda Calculus

Formal system with three parts

- Notation for function expressions
- Proof system for equations
- Calculation rules called reduction
- Additional topics in lambda calculus
 - Mathematical semantics
 - Type systems

History

Origins: formal theory of substitution

• For first-order logic, etc.

More successful for computable functions

- Substitution \rightarrow symbolic computation
- Church/Turing thesis

Influenced design of Lisp, ML, other languages
 Important part of CS history and foundations

Why Study Lambda-Calculus?

Basic syntactic notions

- Free and bound variables
- Functions
- Declarations

Calculation rule

- Symbolic evaluation useful for discussing programs
- Used in optimization (inlining), macro expansion
 - Correct macro processing requires variable renaming
- Illustrates some ideas about scope of binding
 - Lisp originally departed from standard lambda calculus, returned to the fold through Scheme, Common Lisp

Expressions and Functions

Expressions x + y $x + 2^*y + z$ Functions $\lambda x. (x+y)$ $\lambda z. (x + 2^*y + z)$ Application $(\lambda x. (x+y)) 3$ = 3 + y $(\lambda z. (x + 2^*y + z)) 5$ $= x + 2^*y + 5$

Parsing: $\lambda x. f(f x) = \lambda x. (f(f(x)))$

Higher-Order Functions

Given function f, return function f ° f

$\lambda f. \lambda x. f(f x)$

How does this work?

 $(\lambda f. \lambda x. f (f x)) (\lambda y. y+1)$

= $\lambda x. (\lambda y. y+1) ((\lambda y. y+1) x)$

$$= \lambda x. (\lambda y. y+1) (x+1)$$

 $= \lambda x. (x+1)+1$

Same result if step 2 is altered

Same Procedure (ML)

Given function f, return function f ° f fn f => fn x => f(f(x)) How does this work? (fn f => fn x => f(f(x))) (fn y => y + 1)

$$= fn x => ((fn y => y + 1) ((fn y => y + 1) x))$$

$$= \text{fn } x => ((\text{fn } y => y + 1) (x + 1))$$

= fn x = > ((x + 1) + 1)

Same Procedure (JavaScript)

- Given function f, return function f ° f
 function (f) { return function (x) { return f(f(x)); } ; }
 How does this work?
- (function (f) { return function (x) { return f(f(x)); } ; })
 (function (y) { return y + 1; })

function (x) { return (function (y) { return y + 1; }) (x + 1); } function (x) { return ((x + 1) + 1); }

Declarations as "Syntactic Sugar"

function f(x) { return x+2; } f(5); $(\lambda f. f(5)) (\lambda x. x+2)$ block body declared function

Free and Bound Variables

Bound variable is a "placeholder"

- Variable x is bound in λx . (x+y)
- Function λx . (x+y) is same function as λz . (z+y)
- Compare

 $\int x + y \, dx = \int z + y \, dz \qquad \forall x \ \mathsf{P}(x) = \forall z \ \mathsf{P}(z)$

Name of free (i.e., unbound) variable matters!

- Variable y is free in λx . (x+y)
- Function λx . (x+y) is not same as λx . (x+z)

Occurrences

• y is free and bound in λx . ((λy . y+2) x) + y

Reduction

• Basic computation rule is β -reduction

 $(\lambda x. e_1) e_2 \rightarrow [e_2/x]e_1$

where substitution involves renaming as needed (why?)

Reduction

- Apply basic computation rule to any subexpression
- Repeat

Confluence

• Final result (if there is one) is uniquely determined

Renaming Bound Variables

Function application

 $(\lambda f. \lambda x. f(f x)) (\lambda y. y+x)$

apply twice add x to argument Substitute "blindly" – do you see the problem? $\lambda x. [(\lambda y. y+x) ((\lambda y. y+x) x)] = \lambda x. x+x+x$ Rename bound variables $(\lambda f. \lambda z. f(f z)) (\lambda y. y+x)$ $= \lambda z. [(\lambda y. y + x) ((\lambda y. y + x) z))] = \lambda z. z + x + x$ Easy rule: always rename variables to be distinct

Main Points About Lambda Calculus

- \bullet λ captures the "essence" of variable binding
 - Function parameters
 - Declarations
 - Bound variables can be renamed
- Succinct function expressions
- Simple symbolic evaluator via substitution
- Can be extended with
 - Types, various functions, stores and side effects...

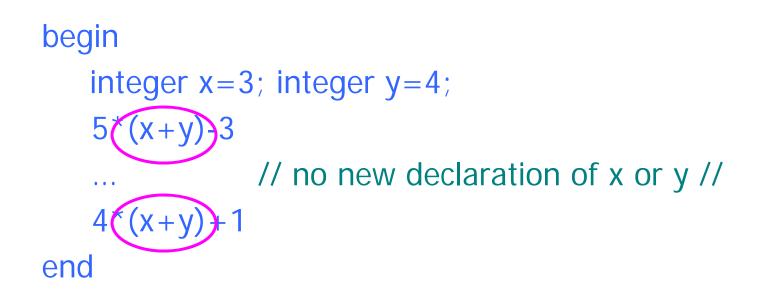
What is a Functional Language?

"No side effects"

Pure functional language: a language with functions, but without side effects or other imperative features

No-Side-Effects Language Test

Within the scope of specific declarations of $x_1, x_2, ..., x_n$, all occurrences of an expression e containing only variables $x_1, x_2, ..., x_n$, must have the same value.



Backus' Turing Award

John Backus: 1977 Turing Award

• Designer of Fortran, BNF, etc.

Turing Award lecture

- Functional programming better than imperative programming
- Easier to reason about functional programs
- More efficient due to parallelism
- Algebraic laws
 - Reason about programs
 - Optimizing compilers

Reasoning About Programs

To prove a program correct, must consider everything a program depends on

- In functional programs, dependence on any data structure is explicit (why?)
- Therefore, it's easier to reason about functional programs
- Do you believe this?

Quicksort in Haskell

Very succinct program qsort [] = [] qsort (x:xs) = qsort elts_lt_x ++ [x] ++ qsort elts_greq_x where elts_lt_x = [y | y <- xs, y < x] elts_greq_x = [y | y <- xs, y >= x]

This is the <u>whole thing</u>

- No assignment just write expression for sorted list
- No array indices, no pointers, no memory management, ...

Compare: Quicksort in C

```
gsort( a, lo, hi ) int a[], hi, lo;
{ int h, l, p, t;
  if (lo < hi) {
      I = Io; h = hi; p = a[hi];
       do {
          while ((I < h) \&\& (a[I] <= p)) I = I+1;
          while ((h > I) \&\& (a[h] >= p)) h = h-1;
          if (I < h) { t = a[I]; a[I] = a[h]; a[h] = t; }
       } while (I < h);
       t = a[1]; a[1] = a[hi]; a[hi] = t;
       qsort( a, lo, l-1);
       qsort( a, l+1, hi );
    }
```

Case Study

[Hudak and Jones, Yale TR, 1994]

Naval Center programming experiment

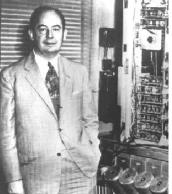
• Separate teams worked on separate languages

Language	Lines of code	Lines of documentation	Development time (hours)
(1) Haskell	85	465	10
(2) Ada	767	714	23
(3) Ada9X	800	200	28
(4) C++	1105	130	-
(5) Awk/Nawk	250	150	-
(6) Rapide	157	0	54
(7) Griffin	251	0	34
(8) Proteus	293	79	26
(9) Relational Lisp	274	12	3
(10) Haskell	156	112	8

Some programs were incomplete or did not run

• Many evaluators didn't understand, when shown the code, that the Haskell program was complete. They thought it was a high-level partial specification.

Von Neumann Bottleneck



Mathematician responsible for idea of stored program

Von Neumann bottleneck

Von Neumann

• Backus' term for limitation in CPU-memory transfer

Related to sequentiality of imperative languages

 Code must be executed in specific order function f(x) { if (x<y) then y = x; else x = y; } g(f(i), f(j));

Eliminating VN Bottleneck

No side effects

- Evaluate subexpressions independently
 - function f(x) { return x < y ? 1 : 2; }</pre>
 - g(f(i), f(j), f(k), ...);
- Good idea but ...

. . .

- Too much parallelism
- Little help in allocation of processors to processes

Effective, easy concurrency is a hard problem