
slide 1

Vitaly Shmatikov

CS 345

Logic Programming

slide 2

Reading Assignment

Mitchell, Chapter 15

slide 3

Logic Programming

Function (method) is the basic primitive in all
languages we have seen so far
• F(x)=y – function F takes x and return y

Relation (predicate) is the basic primitive in
logic programming
• R(x,y) – relationship R holds between x and y

slide 4

Prolog

Short for Programmation en logique
• Alain Colmeraurer (1972)

Basic idea: the program declares the goals of the
computation, not the method for achieving them
Applications in AI, databases, even systems
• Originally developed for natural language processing
• Automated reasoning, theorem proving
• Database searching, as in SQL
• Expert systems
• Recent work at Berkeley on declarative programming

slide 5

Example: Logical Database

AUS

DAL

OKC

HOU

PHX

nonstop(aus, dal).
nonstop(aus, hou).
nonstop(aus, phx).
nonstop(dal, okc).
nonstop(dal, hou).
nonstop(hou, okc).
nonstop(okc, phx).

In Prolog:

slide 6

Logical Database Queries

Where can we fly from Austin?
SQL
• SELECT dest FROM nonstop WHERE source=“aus”;

Prolog
• ?- nonstop(aus, X).
• More powerful than SQL because can use recursion

slide 7

N-Queens Problem

Place N non-attacking queens on the chessboard
• Example of a search problem (why?)

slide 8

N-Queens in Prolog

diagsafe(_, _, []).

diagsafe(Row, ColDist, [QR|QRs]) :-

RowHit1 is Row + ColDist, QR =n= RowHit1,

RowHit2 is Row - ColDist, QR =n= RowHit2,

ColDist1 is ColDist + 1,

diagsafe(Row, ColDist1, QRs).

safe_position([_]).

safe_position([QR|QRs]) :-

diagsafe(QR, 1, QRs),

safe_position(QRs).

nqueens(N, Y) :-

sequence(N, X), permute(X, Y), safe_position(Y).

slide 9

Type Inference in ML

Given an ML term, find its type

x

fun

@

@

+ 2

slide 10

Flight Planning Example

AUS

DAL

OKC

HOU

PHX

nonstop(aus, dal).
nonstop(aus, hou).
nonstop(aus, phx).
nonstop(dal, okc).
nonstop(dal, hou).
nonstop(hou, okc).
nonstop(okc, phx).

Relation: nonstop(X, Y) – there is a flight from X to Y

Each line is
called a clause
and represents
a known fact

A fact is true if
and only if we
can prove it true
using some clause

slide 11

Queries in Prolog

AUS

DAL

OKC

HOU

PHX

?-
Yes
?-
Yes
?-
No
?-

nonstop(aus, dal).

nonstop(dal, okc).

nonstop(aus, okc).

slide 12

Logical Variables in Prolog

AUS

DAL

OKC

HOU

PHX

?-
X=phx ;
No
?-
Y=aus ;
No
?-

nonstop(okc, X).

nonstop(Y, dal).

Is there an X such that
nonstop(okc, X) holds?

slide 13

Non-Determinism

AUS

DAL

OKC

HOU

PHX

?-
X=hou ;
X=okc ;
No
?-
No
?-

nonstop(dal, X).

nonstop(phx, X).

Predicates may return multiple answers or no answers

slide 14

Logical Conjunction

AUS

DAL

OKC

HOU

PHX

?-
X=dal ;
X=hou ;
No
?-

nonstop(aus, X), nonstop(X, okc).

Combine multiple conditions into one query

slide 15

Derived Predicates

AUS

DAL

OKC

HOU

PHX

?-
Via=dal ;
Via=hou ;
No
?-

flyvia(From, To, Via) :-
nonstop(From, Via),
nonstop(Via, To).

flyvia(aus, okc, Via).

• Define new predicates using rules
• conclusion :- premises.

- conclusion is true if premises are true

slide 16

Recursion

AUS

DAL

OKC

HOU

PHX
?-
X=aus ;
X=dal ;
…
?-

reach(X, X).
reach(X,Z) :-

nonstop(X, Y), reach(Y, Z).
reach(X, phx).

• Predicates can be defined recursively

slide 17

Prolog Program Elements

Prolog programs are made from terms
• Variables, constants, structures

Variables begin with a capital letter
• Bob

Constants are either integers, or atoms
• 24, zebra, ‘Bob’, ‘.’

Structures are predicates with arguments
• n(zebra), speaks(Y, English)

slide 18

Horn Clauses

A Horn clause has a head h, which is a
predicate, and a body, which is a list of
predicates p1, p2, …, pn
• It is written as h ← p1, p2, …, pn
• This means, “h is true if p1, p2, …, and pn are

simultaneously true”

Example
• snowing(C) ← precipitation(C), freezing(C)
• This says, “it is snowing in city C if there is

precipitation in city C and it is freezing in city C”

slide 19

Facts, Rules, and Programs

A Prolog fact is a Horn clause without a right-
hand side
• Term.

– The terminating period is mandatory

A Prolog rule is a Horn clause with a right-hand
side (:- represents ←)
• term :- term1, term2, … termn.
• LHS is called the head of the rule

Prolog program = a collection of facts and rules

slide 20

Horn Clauses and Predicates

Any Horn clause h ← p1, p2, …, pn can be
written as a predicate p1 ∧ p2 ∧ … ∧ pn ⊃ h, or,
equivalently, ¬(p1 ∧ p2 ∧ … ∧ pn) ∨ h
Not every predicate can be written as a Horn
clause (why?)
• Example: literate(x) ⊃ reads(x) ∨ writes(x)

slide 21

Lists

A list is a series of terms separated by commas
and enclosed in brackets
• The empty list is written []
• A “don’t care” entry is signified by _, as in [_, X, Y]
• A list can also be written in the form [Head | Tail]

slide 22

Appending a List

append([], X, X).
append([Head | Tail], Y, [Head | Z]) :-

append(Tail, Y, Z).
• The last parameter designates the result of the

function, so a variable must be passed as an argument

This definition says:
• Appending X to the empty list returns X
• If Y is appended to Tail to get Z, then Y can be

appended to a list one element larger [Head | Tail] to
get [Head | Z]

slide 23

List Membership

member(X, [X | _]).
member(X, [_ | Y]) :- member(X, Y).

The test for membership succeeds if either:
• X is the head of the list [X | _]
• X is not the head of the list [_ | Y] , but X is a

member of the remaining list Y

Pattern matching governs tests for equality
“Don’t care” entries (_) mark parts of a list that
aren’t important to the rule

slide 24

More List Functions

X is a prefix of Z if there is a list Y that can be
appended to X to make Z
• prefix(X, Z) :- append(X, Y, Z).
• Suffix is similar: suffix(Y, Z) :- append(X, Y, Z).

Finding all the prefixes (suffixes) of a list
?- prefix(X, [my, dog, has, fleas]).
X = [];
X = [my];
X = [my, dog];
…

slide 25

Answering Prolog Queries

Computation in Prolog (answering a query) is
essentially searching for a logical proof
Goal-directed, backtracking, depth-first search
• Resolution strategy:

if h is the head of a Horn clause
h ← terms
and it matches one of the terms of another Horn clause
t ← t1, h, t2
then that term can be replaced by h’s terms to form
t ← t1, terms, t2

• What about variables in terms?

slide 26

Flight Planning Example

AUS

DALHOU

?- n(aus, hou).
?- n(aus, dal).
?- r(X, X).
?- r(X, Z) :- n(X, Y), r(Y, Z).
?- r(aus, X)

slide 27

Flight Planning: Proof Search

AUS

DALHOU

Rule 1:
r(X, X).

Rule 2:
r(X, Z) :- n(X, Y), r(Y, Z).

Solution
r(aus, aus)
r(aus, hou)

r(aus, X)

r(aus,aus) n(aus,Y), r(Y,X)

n(aus,Y)

n(aus,hou)

r(hou,X)

r(hou,hou) n(hou,Z), r(Z,X)

slide 28

Flight Planning: Backtracking

AUS

DALHOU

Rule 1:
r(X, X).

Rule 2:
r(X, Z) :- n(X, Y), r(Y, Z).

Solution
r(aus, aus)
r(aus, hou)
r(aus, dal)

r(aus, X)

r(aus,aus) n(aus,Y), r(Y,X)

n(aus,Y)

n(aus,hou)

r(dal,X)

r(dal,dal) n(dal,Z), r(Z,X)

n(aus,dal)

slide 29

Unification

Two terms are unifiable if there is a variable
substitution such that they become the same
• For example, f(X) and f(3) are unified by [X=3]
• f(f(Y)) and f(X) are unified by [X=f(Y)]
• How about g(X,Y) and f(3)?

Assignment of values to variables during
resolution is called instantiation
Unification is a pattern-matching process that
determines what instantiations can be made to
variables during a series of resolutions

slide 30

Example: List Membership

Rule 1:
mem(X, [X | _]).

Rule 2:
mem(X, [_ | Y]) :- mem(X, Y).

mem(Z, [1,2])

mem(1, [1,2]) mem(X, [2])

mem(2, [2]) mem(X’, [])

? ?

{X=Z, X=1} {Z=X, Y=[2]}

{X=2} {X’=X, Y’=[]}

?- mem(X, [1,2]).
X=1 ;
X=2 ;
No
?-

Prolog

slide 31

Soundness and Completeness

Soundness
• If we can prove something, then it is logically true

Completeness
• We can prove everything that is logically true

Prolog search procedure is sound, but
incomplete

slide 32

Flight Planning: Small Change

AUS

DALHOU

Rule 1:
r(X, X).

Rule 2:
r(X, Z) :- r(X, Y), n(Y, Z).

Solution
r(aus, aus)

r(aus, X)

r(aus,aus) r(aus,Y), n(Y,Z)

r(aus,Y)

instead of n(X,Y), r(Y,Z)

Infinite loop!

slide 33

“Is” Operator

is instantiates a temporary variable
• Similar to a local variable in Algol-like languages

Example: defining a factorial function
?- factorial(0, 1).
?- factorial(N, Result) :-

N > 0, M is N - 1,
factorial(M, SubRes), Result is N * SubRes.

slide 34

Tracing

Tracing helps programmer see the dynamics of
a proof search
Example: tracing a factorial call
?- factorial(0, 1).
?- factorial(N, Result) :-

N > 0, M is N - 1,
factorial(M, SubRes), Result is N * SubRes.

?- trace(factorial/2).
– Argument to “trace” must include function’s arity

?- factorial(4, X).

slide 35

Tracing Factorial

?- factorial(4, X).
Call: (7) factorial(4, _G173)
Call: (8) factorial(3, _L131)
Call: (9) factorial(2, _L144)
Call: (10) factorial(1, _L157)
Call: (11) factorial(0, _L170)
Exit: (11) factorial(0, 1)
Exit: (10) factorial(1, 1)
Exit: (9) factorial(2, 2)
Exit: (8) factorial(3, 6)
Exit: (7) factorial(4, 24)

X = 24

These are
temporary
variables

These are
levels in the
search tree

slide 36

The Cut

When inserted on the right-hand side of the
rule, the cut operator ! operator forces subgoals
not to be re-tried if r.h.s. succeeds once
Example: bubble sort
• bsort(L, S) :- append(U, [A, B | V], L),

B < A, !,
append(U, [B, A | V], M),
bsort(M, S).

• bsort(L, L).

Gives one
answer rather
than many

slide 37

Tracing Bubble Sort

?- bsort([5,2,3,1], Ans).
Call: (7) bsort([5, 2, 3, 1], _G221)
Call: (8) bsort([2, 5, 3, 1], _G221)
…
Call: (12) bsort([1, 2, 3, 5], _G221)
Redo: (12) bsort([1, 2, 3, 5], _G221)
…
Exit: (7) bsort([5, 2, 3, 1], [1, 2, 3, 5])

Ans = [1, 2, 3, 5] ;

No

Without the cut, this
would have given some
wrong answers

slide 38

Negation in Prolog

not operator is implemented as goal failure
• not(G) :- G, !, fail

– “fail” is a special goal that always fail

• What does this mean?

Example: factorial
• factorial(N, 1) :- N < 1.
• factorial(N, Result) :- not(N < 1), M is N - 1,

factorial(M, P),
Result is N * P.

	Logic Programming
	Reading Assignment
	Logic Programming
	Prolog
	Example: Logical Database
	Logical Database Queries
	N-Queens Problem
	N-Queens in Prolog
	Type Inference in ML
	Flight Planning Example
	Queries in Prolog
	Logical Variables in Prolog
	Non-Determinism
	Logical Conjunction
	Derived Predicates
	Recursion
	Prolog Program Elements
	Horn Clauses
	Facts, Rules, and Programs
	Horn Clauses and Predicates
	Lists
	Appending a List
	List Membership
	More List Functions
	Answering Prolog Queries
	Flight Planning Example
	Flight Planning: Proof Search
	Flight Planning: Backtracking
	Unification
	Example: List Membership
	Soundness and Completeness
	Flight Planning: Small Change
	“Is” Operator
	Tracing
	Tracing Factorial
	The Cut
	Tracing Bubble Sort
	Negation in Prolog

