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Reading Assignment

Mitchell, Chapters 9 and 10
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Topics

Modular program development
• Stepwise refinement
• Interface, specification, and implementation

Language support for modularity
• Procedural abstraction
• Abstract data types
• Packages and modules
• Generic abstractions

– Functions and modules with type parameters
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Stepwise Refinement

“… program ... gradually developed 
in a sequence of refinement steps … 
In each step, instructions …  are 
decomposed into more detailed 
instructions.”
• Niklaus Wirth, 1971 
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Dijkstra’s Example       (1969)

begin
print first 1000 primes

end begin
variable table p
fill table p with first 1000       

primes
print table p

end
begin

int array p[1:1000]
make for k from 1 to 1000

p[k] equal to k-th prime
print p[k] for k from 1 to 1000

end
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Program Structure

Main Program

Sub-program Sub-program Sub-program

Sub-programSub-program
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Data Refinement

“As tasks are refined, so the data may have to 
be refined, decomposed, or structured, and it is 
natural to refine program and data 
specifications in parallel”
• Wirth, 1971
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Example

For level 2, represent account 
balance by integer variable
For level 3, need to maintain 
list of past transactions

Bank Transactions

Deposit Withdraw Print Statement

Print transaction 
history
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Modularity: Basic Concepts

Component
• Meaningful program unit

– Function, data structure, module, …

Interface
• Types and operations defined within a component 

that are visible outside the component

Specification
• Intended behavior of component, expressed as 

property observable through interface 

Implementation
• Data structures and functions inside component
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Example: Function Component

Component
• Function to compute square root

Interface
• float sqroot (float x)

Specification
• If x>1, then sqrt(x)*sqrt(x) ≈ x.

Implementation
float sqroot (float x){

float y = x/2; float step=x/4; int i;
for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
return y;

}
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Example: Data Type

Component
• Priority queue: data structure that returns elements 

in order of decreasing priority

Interface
• Type pq
• Operations empty : pq

insert : elt * pq → pq
deletemax : pq → elt * pq

Specification
• Insert adds to set of stored elements
• Deletemax returns max elt and pq of remaining elts



slide 12

Using Priority Queue Data Type

Priority queue: structure with three operations
empty : pq
insert       : elt * pq → pq
deletemax : pq → elt * pq

Algorithm using priority queue (heap sort)
begin 
create empty pq s
insert each element from array into s
remove elts in decreasing order and place in array

end
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Abstract Data Types (ADT)

Prominent language development of 1970s
Idea 1: Separate interface from implementation
• Example: 

Sets have operations empty, insert, union, 
is_member?, …

Sets are implemented as … linked list … 

Idea 2: Use type checking to enforce separation
• Client program only has access to operations in the 

interface
• Implementation encapsulated inside ADT construct
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Modules

General construct for information hiding
• Known as modules (Modula), packages (Ada), 

structures (ML), …

Interface:
• A set of names and their types

Implementation: 
• Declaration for every entry in the interface
• Additional declarations that are hidden
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Modules and Data Abstraction

module Set
interface

type set
val empty : set
fun insert : elt * set -> set 
fun union : set * set -> set
fun isMember : elt * set -> bool

implementation
type set = elt list
val empty = nil
fun insert(x, elts) = ... 
fun union(…) = ... 
...

end Set

Can define ADT
• Private type
• Public operations

Modules are more general
• Several related types and 

operations

Some languages separate 
interface & implementation
• One interface can have 

multiple implementations
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Generic Abstractions

Parameterize modules by types, other modules
Create general implementations 
• Can be instantiated in many ways
• Same implementation for multiple types

Language examples:
• Ada generic packages, C++ templates (especially STL –

Standard Template Library), ML functors, …
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C++ Templates

Type parameterization mechanism
• template<class T> …  indicates type parameter T
• C++ has class templates and function templates

Instantiation at link time
• Separate copy of template generated for each type
• Why code duplication?

– Size of local variables in activation record
– Link to operations on parameter type

Remember swap function?
• See lecture notes on overloading and polymorphism
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C++ Standard Template Library

Many generic abstractions
• Polymorphic abstract types and operations
• Excellent example of generic programming

Efficient running time
(but not always space)
Written in C++
• Uses template mechanism and overloading
• Does not rely on objects – no virtual functions!

Architect: Alex Stepanov
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Main Entities in STL

Container: Collection of typed objects
• Examples: array, list, associative dictionary, ...

Iterator: Generalization of pointer or address
Algorithm
Adapter: Convert from one form to another
• Example: produce iterator from updatable container

Function object: Form of closure (“by hand”)
Allocator: encapsulation of a memory pool
• Example: GC memory, ref count memory, ...
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Example of STL Approach

Function to merge two sorted lists (concept)
• merge : range(s) × range(t) × comparison(u) 

→ range(u)
• range(s) - ordered “list” of elements of type s, given 

by pointers to first and last elements
• comparison(u) - boolean-valued function on type u
• subtyping - s and t must be subtypes of u
(This is not STL syntax, but illustrates the concept) 



slide 21

Merge in STL

Ranges represented by iterators
• Iterator is generalization of pointer
• supports ++  (move to next element)

Comparison operator is object of class Compare
Polymorphism expressed using template

template < class InputIterator1, class InputIterator2, 
class OutputIterator, class Compare >

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator1 last2,
OutputIterator result, Compare comp)
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STL vs. “Raw” C and C++

C:
qsort( (void*)v, N, sizeof(v[0]), compare_int );

C++, using raw C arrays:
int v[N];

sort( v, v+N );

C++, using a vector class:
vector v(N);

sort( v.begin(), v.end() );
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Object-Oriented Programming

Several important language concepts
Dynamic lookup 
Encapsulation
Inheritance 
Subtyping
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Objects

An object consists of … 
• Hidden data

– Instance variables (member 
data)

– Hidden functions also possible

• Public operations
– Methods (member functions)
– Can have public variables in 

some languages

Object-oriented program:
• Send messages to objects

hidden data

method1msg1

. . .. . .

methodnmsgn

Universal encapsulation
construct

(can be used for data
structures, file systems,

databases, windows, etc.)
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Dynamic Lookup

In conventional programming,
operation (operands)

meaning of operation is always the same 
In object-oriented programming,

object message (arguments)
code depends on object and message

Fundamental difference between 
abstract data types and objects!
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Overloading vs. Dynamic Lookup

Conventional programming  add (x, y)
function add has fixed meaning
Add two numbers               x add (y)
different add if x is integer, complex
Similar to overloading, but critical difference: 
overloading is resolved at compile time, dynamic 
lookup at run time
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Encapsulation

Builder of a concept has detailed view
User of a concept has “abstract” view
Encapsulation separates these two views 
• Implementation code: operate on representation
• Client code: operate by applying fixed set of 

operations provided by implementer of abstraction

message Object
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Subtyping and Inheritance    

Interface
• The external view of an object

Subtyping
• Relation between interfaces

Implementation
• The internal representation of an object    

Inheritance
• Relation between implementations
• New objects may be defined by reusing  

implementations of other objects  
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Object Interfaces

Interface
• The messages understood by an object

Example: point
• x-coord :  returns x-coordinate of a point
• y-coord :  returns y-coordinate of a point
• move :  method for changing location 

The interface of an object is its type
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Subtyping

If interface A contains all of interface B, then 
A objects can also be used as B objects

Colored_point interface contains Point
• Colored_point is a subtype of Point

Point
x-coord
y-coord
move

Colored_point
x-coord
y-coord
color
move
change_color
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Example

class Point 
private  

float x, y

public

point move (float dx, float dy);

class Colored_point
private  

float x, y; color c

public

point move(float dx, float dy);

point change_color(color newc);

Subtyping
• Colored points can be 

used in place of points

• Property used by client 
program

Inheritance
• Colored points can be 

implemented by reusing 
point implementation

• Technique used by 
implementer of classes
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Object-Oriented Program Structure

Group data and functions
Class
• Defines behavior of all objects that are instances of 

the class

Subtyping
• Place similar data in related classes

Inheritance
• Avoid reimplementing functions that are already 

defined
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Example: Geometry Library

Define general concept shape
Implement two shapes: circle, rectangle
Functions on shapes: center, move, rotate, print
Anticipate additions to library
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Shapes

Interface of every shape must include 
center, move, rotate, print
Different kinds of shapes are implemented 
differently
• Square: four points, representing corners
• Circle: center point and radius
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Subtype Hierarchy

Shape

Circle Rectangle

General interface defined in the shape class
Implementations defined in circle, rectangle
Extend hierarchy with additional shapes



slide 36

Code Placed in Classes

Dynamic lookup
• circle move(x,y)   calls function c_move

Conventional organization
• Place c_move, r_move in move function

center move rotate print

Circle c_center c_move c_rotate c_print

Rectangle r_center r_move r_rotate r_print
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Usage Example: Processing Loop

Remove shape from work queue
Perform action     

Control loop does not know the 
type of each shape
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Subtyping ≠ Inheritance

Collection

Set

Sorted Set

Indexed

Array Dictionary

String
Subtyping
Inheritance
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