
slide 1

Vitaly Shmatikov

CS 345

Modularity and
Object-Oriented Programming

slide 2

Reading Assignment

Mitchell, Chapters 9 and 10

slide 3

Topics

Modular program development
• Stepwise refinement
• Interface, specification, and implementation

Language support for modularity
• Procedural abstraction
• Abstract data types
• Packages and modules
• Generic abstractions

– Functions and modules with type parameters

slide 4

Stepwise Refinement

“… program ... gradually developed
in a sequence of refinement steps …
In each step, instructions … are
decomposed into more detailed
instructions.”
• Niklaus Wirth, 1971

slide 5

Dijkstra’s Example (1969)

begin
print first 1000 primes

end begin
variable table p
fill table p with first 1000

primes
print table p

end
begin

int array p[1:1000]
make for k from 1 to 1000

p[k] equal to k-th prime
print p[k] for k from 1 to 1000

end

slide 6

Program Structure

Main Program

Sub-program Sub-program Sub-program

Sub-programSub-program

slide 7

Data Refinement

“As tasks are refined, so the data may have to
be refined, decomposed, or structured, and it is
natural to refine program and data
specifications in parallel”
• Wirth, 1971

slide 8

Example

For level 2, represent account
balance by integer variable
For level 3, need to maintain
list of past transactions

Bank Transactions

Deposit Withdraw Print Statement

Print transaction
history

slide 9

Modularity: Basic Concepts

Component
• Meaningful program unit

– Function, data structure, module, …

Interface
• Types and operations defined within a component

that are visible outside the component

Specification
• Intended behavior of component, expressed as

property observable through interface

Implementation
• Data structures and functions inside component

slide 10

Example: Function Component

Component
• Function to compute square root

Interface
• float sqroot (float x)

Specification
• If x>1, then sqrt(x)*sqrt(x) ≈ x.

Implementation
float sqroot (float x){

float y = x/2; float step=x/4; int i;
for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
return y;

}

slide 11

Example: Data Type

Component
• Priority queue: data structure that returns elements

in order of decreasing priority

Interface
• Type pq
• Operations empty : pq

insert : elt * pq → pq
deletemax : pq → elt * pq

Specification
• Insert adds to set of stored elements
• Deletemax returns max elt and pq of remaining elts

slide 12

Using Priority Queue Data Type

Priority queue: structure with three operations
empty : pq
insert : elt * pq → pq
deletemax : pq → elt * pq

Algorithm using priority queue (heap sort)
begin
create empty pq s
insert each element from array into s
remove elts in decreasing order and place in array

end

slide 13

Abstract Data Types (ADT)

Prominent language development of 1970s
Idea 1: Separate interface from implementation
• Example:

Sets have operations empty, insert, union,
is_member?, …

Sets are implemented as … linked list …

Idea 2: Use type checking to enforce separation
• Client program only has access to operations in the

interface
• Implementation encapsulated inside ADT construct

slide 14

Modules

General construct for information hiding
• Known as modules (Modula), packages (Ada),

structures (ML), …

Interface:
• A set of names and their types

Implementation:
• Declaration for every entry in the interface
• Additional declarations that are hidden

slide 15

Modules and Data Abstraction

module Set
interface

type set
val empty : set
fun insert : elt * set -> set
fun union : set * set -> set
fun isMember : elt * set -> bool

implementation
type set = elt list
val empty = nil
fun insert(x, elts) = ...
fun union(…) = ...
...

end Set

Can define ADT
• Private type
• Public operations

Modules are more general
• Several related types and

operations

Some languages separate
interface & implementation
• One interface can have

multiple implementations

slide 16

Generic Abstractions

Parameterize modules by types, other modules
Create general implementations
• Can be instantiated in many ways
• Same implementation for multiple types

Language examples:
• Ada generic packages, C++ templates (especially STL –

Standard Template Library), ML functors, …

slide 17

C++ Templates

Type parameterization mechanism
• template<class T> … indicates type parameter T
• C++ has class templates and function templates

Instantiation at link time
• Separate copy of template generated for each type
• Why code duplication?

– Size of local variables in activation record
– Link to operations on parameter type

Remember swap function?
• See lecture notes on overloading and polymorphism

slide 18

C++ Standard Template Library

Many generic abstractions
• Polymorphic abstract types and operations
• Excellent example of generic programming

Efficient running time
(but not always space)
Written in C++
• Uses template mechanism and overloading
• Does not rely on objects – no virtual functions!

Architect: Alex Stepanov

slide 19

Main Entities in STL

Container: Collection of typed objects
• Examples: array, list, associative dictionary, ...

Iterator: Generalization of pointer or address
Algorithm
Adapter: Convert from one form to another
• Example: produce iterator from updatable container

Function object: Form of closure (“by hand”)
Allocator: encapsulation of a memory pool
• Example: GC memory, ref count memory, ...

slide 20

Example of STL Approach

Function to merge two sorted lists (concept)
• merge : range(s) × range(t) × comparison(u)

→ range(u)
• range(s) - ordered “list” of elements of type s, given

by pointers to first and last elements
• comparison(u) - boolean-valued function on type u
• subtyping - s and t must be subtypes of u
(This is not STL syntax, but illustrates the concept)

slide 21

Merge in STL

Ranges represented by iterators
• Iterator is generalization of pointer
• supports ++ (move to next element)

Comparison operator is object of class Compare
Polymorphism expressed using template

template < class InputIterator1, class InputIterator2,
class OutputIterator, class Compare >

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator1 last2,
OutputIterator result, Compare comp)

slide 22

STL vs. “Raw” C and C++

C:
qsort((void*)v, N, sizeof(v[0]), compare_int);

C++, using raw C arrays:
int v[N];

sort(v, v+N);

C++, using a vector class:
vector v(N);

sort(v.begin(), v.end());

slide 23

Object-Oriented Programming

Several important language concepts
Dynamic lookup
Encapsulation
Inheritance
Subtyping

slide 24

Objects

An object consists of …
• Hidden data

– Instance variables (member
data)

– Hidden functions also possible

• Public operations
– Methods (member functions)
– Can have public variables in

some languages

Object-oriented program:
• Send messages to objects

hidden data

method1msg1

.

methodnmsgn

Universal encapsulation
construct

(can be used for data
structures, file systems,

databases, windows, etc.)

slide 25

Dynamic Lookup

In conventional programming,
operation (operands)

meaning of operation is always the same
In object-oriented programming,

object message (arguments)
code depends on object and message

Fundamental difference between
abstract data types and objects!

slide 26

Overloading vs. Dynamic Lookup

Conventional programming add (x, y)
function add has fixed meaning
Add two numbers x add (y)
different add if x is integer, complex
Similar to overloading, but critical difference:
overloading is resolved at compile time, dynamic
lookup at run time

slide 27

Encapsulation

Builder of a concept has detailed view
User of a concept has “abstract” view
Encapsulation separates these two views
• Implementation code: operate on representation
• Client code: operate by applying fixed set of

operations provided by implementer of abstraction

message Object

slide 28

Subtyping and Inheritance

Interface
• The external view of an object

Subtyping
• Relation between interfaces

Implementation
• The internal representation of an object

Inheritance
• Relation between implementations
• New objects may be defined by reusing

implementations of other objects

slide 29

Object Interfaces

Interface
• The messages understood by an object

Example: point
• x-coord : returns x-coordinate of a point
• y-coord : returns y-coordinate of a point
• move : method for changing location

The interface of an object is its type

slide 30

Subtyping

If interface A contains all of interface B, then
A objects can also be used as B objects

Colored_point interface contains Point
• Colored_point is a subtype of Point

Point
x-coord
y-coord
move

Colored_point
x-coord
y-coord
color
move
change_color

slide 31

Example

class Point
private

float x, y

public

point move (float dx, float dy);

class Colored_point
private

float x, y; color c

public

point move(float dx, float dy);

point change_color(color newc);

Subtyping
• Colored points can be

used in place of points

• Property used by client
program

Inheritance
• Colored points can be

implemented by reusing
point implementation

• Technique used by
implementer of classes

slide 32

Object-Oriented Program Structure

Group data and functions
Class
• Defines behavior of all objects that are instances of

the class

Subtyping
• Place similar data in related classes

Inheritance
• Avoid reimplementing functions that are already

defined

slide 33

Example: Geometry Library

Define general concept shape
Implement two shapes: circle, rectangle
Functions on shapes: center, move, rotate, print
Anticipate additions to library

slide 34

Shapes

Interface of every shape must include
center, move, rotate, print
Different kinds of shapes are implemented
differently
• Square: four points, representing corners
• Circle: center point and radius

slide 35

Subtype Hierarchy

Shape

Circle Rectangle

General interface defined in the shape class
Implementations defined in circle, rectangle
Extend hierarchy with additional shapes

slide 36

Code Placed in Classes

Dynamic lookup
• circle move(x,y) calls function c_move

Conventional organization
• Place c_move, r_move in move function

center move rotate print

Circle c_center c_move c_rotate c_print

Rectangle r_center r_move r_rotate r_print

slide 37

Usage Example: Processing Loop

Remove shape from work queue
Perform action

Control loop does not know the
type of each shape

slide 38

Subtyping ≠ Inheritance

Collection

Set

Sorted Set

Indexed

Array Dictionary

String
Subtyping
Inheritance

	Modularity and�Object-Oriented Programming
	Reading Assignment
	Topics
	Stepwise Refinement
	Dijkstra’s Example (1969)
	Program Structure
	Data Refinement
	Example
	Modularity: Basic Concepts
	Example: Function Component
	Example: Data Type
	Using Priority Queue Data Type
	Abstract Data Types (ADT)
	Modules
	Modules and Data Abstraction
	Generic Abstractions
	C++ Templates
	C++ Standard Template Library
	Main Entities in STL
	Example of STL Approach
	Merge in STL
	STL vs. “Raw” C and C++
	Object-Oriented Programming
	Objects
	Dynamic Lookup
	Overloading vs. Dynamic Lookup
	Encapsulation
	Subtyping and Inheritance
	Object Interfaces
	Subtyping
	Example
	Object-Oriented Program Structure
	Example: Geometry Library
	Shapes
	Subtype Hierarchy
	Code Placed in Classes
	Usage Example: Processing Loop
	Subtyping  Inheritance

