
CS 345 - Programming Languages
Fall 2010

Homework #1

Due: 2pm CDT (in class), September 21, 2010

YOUR NAME:

Collaboration policy

No collaboration is permitted on this assignment. Any cheating (e.g., submitting another
person’s work as your own, or permitting your work to be copied) will automatically result
in a failing grade. The Computer Science Department Code of Conduct can be found at
http://www.cs.utexas.edu/academics/conduct/.

Late submission policy

This homework is due at the beginning of class on September 21. All late submissions
will be subject to the following policy.

You start the semester with a credit of 3 late days. For the purpose of counting late
days, a “day” is 24 hours starting at 2pm on the assignment’s due date. Partial days are
rounded up to the next full day. You are free to divide your late days among the take-home
assignments any way you want: submit four assignments 1 day late, submit one assignment
3 days late, etc. After your 3 days are used up, no late submissions will be accepted and you
will automatically receive 0 points for each late assignment.

You may submit late assignments to Vitaly Shmatikov (CSA 1.114—slide under the door
if the office is locked). If you are submitting late, please indicate how many late
days you are using.

Write the number of late days you are using:

1

Homework #1 (35 points)

Problem 1 (4 points)

Describe some design tradeoffs between efficiency and safety or reliability in any program-
ming language you know.

Problem 2 (4 points)

By hand, using a top-down recursive descent approach, derive the complete parse tree for
the simple C program below, showing each non-terminal interior node and each terminal leaf
note.

int main() { int x; if (x == 0) return 1; else return 2*x; }

2

Problem 3

The purpose of this problem is to introduce you to lexical and syntactic analysis, and to
help you gain some experience with Flex, Bison, and C. You will start with a simple integer
calculator. Its Flex and Bison specifications can be found here, in the files called, respectively,
icalc.l and icalc.y:

http://www.cs.utexas.edu/~shmat/courses/cs345/icalc.tar.gz

Your goal is to extend the calculator by adding new lexical specifications and BNF
grammar rules for correctly evaluating new types of expressions.

The operators and their associativity rules are given below, listed from lowest to highest
precedence. Parentheses “()” can be used to override the default precedence rules.

Operators Category Associativity
=, +=,−=, ∗=, /=, %= binary assignment right-to-left
? : ternary conditional right-to-left
|| binary logical OR left-to-right
&& binary logical AND left-to-right
<, >,<=, >= binary relational left-to-right
==, != binary equality/inequality left-to-right
+,− binary additive left-to-right
∗, /, % binary multiplicative left-to-right
ˆ binary exponentiation right-to-left
−, + unary minus/plus right-to-left
++,−− postfix increment/decrement left-to-right
++,−− prefix increment/decrement right-to-left

Submission instructions

1. Submit a paper printout of your Flex and Bison code, stapled to the first page of this
homework (the one showing your name and the number of late days you are using, if
any). The printout must be processed using the following command:

enscript -C -2Gr -Ec <yourfile> -o <outputfile.ps>

2. Submit your source code electronically using the following command:

turnin --submit austin hw2 <filename1> <filename2> ...

Problem 3a (6 points)

Add twenty-six 32-bit registers, labeled a through z. Users should be able to store values
in registers and use them in subsequent expressions in the calculator. A register variable by
itself evaluates to the value currently stored in the register. Registers should all be initialized
to 0 when the calculator starts.

3

You should also implement assignment expressions of the form reg = expr, reg +=

expr, reg -= expr, reg *= expr, reg /= expr, and reg %= expr. Each assignment ex-
pression evaluates to the value of the expression on the right-hand side, updates the register
on the left-hand side, and prints the result. Note the associativity of the assignment
operators (see the table above).

icalc: b

0

icalc: b=3

3

icalc: b *= 5 + a

15

icalc: a = b = c = 7

7

icalc: z += a*b + c

56

Problem 3b (4 points)

Add C-style unary increment and decrement operators ++ and --, ensuring that they can
only be applied to registers (i.e., ++2 is a syntax error). Pay attention to the precedence of
these operators vs. binary operators. These operators should have the same semantics as in
C.

icalc: x=1

1

icalc: x++

1

icalc: x

2

icalc: ++x

3

icalc: ---x

syntax error

icalc: -(--x)

-2

Problem 3c (3 points)

Implement built-in constants MAXINT and MININT, assuming signed two’s-complement 32-bit
integers.

icalc: MAXINT

2147483647

4

icalc: MININT

-2147483648

Problem 3d (4 points)

Implement a binary exponentiation operator ˆ that raises the first argument to the power of
the second argument (note the associativity of this operator in the table above).

Feel free to look at the standard C function pow(x,y), as defined in math.h. It computes
x^y up to MAXINT and -x^y up to MININT, and pow(x,0)=1 for all x.

icalc: 2^5

32

icalc: 2^0

1

icalc: -2^31

-2147483648

icalc: 2^31

2147483647

icalc: 2^100

2147483647

Problem 3e (4 points)

Implement built-in functions abs, min and max as prefix operators which take a comma-
separated, parenthesized list of arguments that can be constants, registers, or expressions.

icalc: abs(-5)

5

icalc: a

0

icalc: x=abs(a-2*3)

6

icalc: min(abs(-2),min(5,1))

1

icalc: max(x,2+2)

6

Problem 3f (6 points)

Implement relational operators ==, !=, <, <=, >, >=, logical operators || and &&, and
the ternary conditional expression operator ?: Their semantics should be the same as in C.

5

