

slide 1

Vitaly Shmatikov

CS 361S

Overview of

Public-Key Cryptography

slide 2

Reading Assignment

Kaufman 6.1-6

slide 3

Public-Key Cryptography

?

Given: Everybody knows Bob’s public key
 - How is this achieved in practice?

 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a message that
 only Bob can read

 2. Bob wants to send a message that
 only Bob could have written

public key

public key

Alice
Bob

slide 4

Applications of Public-Key Crypto

Encryption for confidentiality

• Anyone can encrypt a message

– With symmetric crypto, must know the secret key to encrypt

• Only someone who knows the private key can decrypt

• Secret keys are only stored in one place

Digital signatures for authentication

• Only someone who knows the private key can sign

Session key establishment

• Exchange messages to create a secret session key

• Then switch to symmetric cryptography (why?)

slide 5

Public-Key Encryption

Key generation: computationally easy to generate
a pair (public key PK, private key SK)

Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M

• Infeasible to learn anything about M from C without SK

• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

slide 6

Some Number Theory Facts

Euler totient function (n) where n1 is the
number of integers in the [1,n] interval that are
relatively prime to n

• Two numbers are relatively prime if their
 greatest common divisor (gcd) is 1

Euler’s theorem:

 if aZn*, then a(n) 1 mod n

Special case: Fermat’s Little Theorem

 if p is prime and gcd(a,p)=1, then ap-1 1 mod p

slide 7

RSA Cryptosystem

Key generation:

• Generate large primes p, q

– At least 2048 bits each… need primality testing!

• Compute n=pq

– Note that (n)=(p-1)(q-1)

• Choose small e, relatively prime to (n)

– Typically, e=3 (may be vulnerable) or e=216+1=65537 (why?)

• Compute unique d such that ed 1 mod (n)

• Public key = (e,n); private key = d

Encryption of m: c = me mod n

Decryption of c: cd mod n = (me)d mod n = m

[Rivest, Shamir, Adleman 1977]

slide 8

Why RSA Decryption Works

ed 1 mod (n)

Thus ed = 1+k(n) = 1+k(p-1)(q-1) for some k

If gcd(m,p)=1, then by Fermat’s Little Theorem,
mp-1 1 mod p

Raise both sides to the power k(q-1) and multiply
by m, obtaining m1+k(p-1)(q-1) m mod p

Thus med m mod p

By the same argument, med m mod q

Since p and q are distinct primes and pq=n,

 med m mod n

slide 9

Why Is RSA Secure?

RSA problem: given c, n=pq, and
 e such that gcd(e,(p-1)(q-1))=1,
 find m such that me=c mod n

• In other words, recover m from ciphertext c and public
key (n,e) by taking eth root of c modulo n

• There is no known efficient algorithm for doing this

Factoring problem: given positive integer n, find
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

If factoring is easy, then RSA problem is easy, but
may be possible to break RSA without factoring n

“Textbook” RSA Is Bad Encryption

Deterministic

• Attacker can guess plaintext, compute ciphertext, and
compare for equality

• If messages are from a small set (for example, yes/no),
can build a table of corresponding ciphertexts

Can tamper with encrypted messages

• Take an encrypted auction bid c and submit

 c(101/100)e mod n instead

Does not provide semantic security (security
against chosen-plaintext attacks)

slide 10

slide 11

Integrity in RSA Encryption

“Textbook” RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1m2

– (m1
e) (m2

e) mod n (m1m2)
e mod n

• Attacker can convert m into mk without decrypting

– (me)k mod n (mk)e mod n

In practice, OAEP is used: instead of encrypting
M, encrypt MG(r) ; rH(MG(r))

• r is random and fresh, G and H are hash functions

• Resulting encryption is plaintext-aware: infeasible to
compute a valid encryption without knowing plaintext

– … if hash functions are “good” and RSA problem is hard

slide 12

Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key

 Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message

1. To compute a signature, must know the private key

2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

slide 13

RSA Signatures

Public key is (n,e), private key is d

To sign message m: s = hash(m)d mod n

• Signing and decryption are the same mathematical
operation in RSA

To verify signature s on message m:

 se mod n = (hash(m)d)e mod n = hash(m)

• Verification and encryption are the same mathematical
operation in RSA

Message must be hashed and padded (why?)

slide 14

Digital Signature Algorithm (DSA)

U.S. government standard (1991-94)

• Modification of the ElGamal signature scheme (1985)

Key generation:

• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0t8

• Select hZp* and compute g=h(p-1)/q mod p

• Select random x such 1xq-1, compute y=gx mod p

Public key: (p, q, g, gx mod p), private key: x

Security of DSA requires hardness of discrete log

• If one can take discrete logarithms, then can extract x
(private key) from gx mod p (public key)

slide 15

DSA: Signing a Message

Message

Hash function

(SHA-1)

Random secret

between 0 and q

r = (gk mod p) mod q

Private key

s = k-1(H(M)+xr) mod q

(r,s) is the

signature on M

slide 16

DSA: Verifying a Signature

Message

Signature

w = s’-1 mod q

Compute

(gH(M’)w yr’w mod q mod p) mod q

Public key

If they match, signature is valid

slide 17

Why DSA Verification Works

If (r,s) is a valid signature, then

 r (gk mod p) mod q ; s k-1(H(M)+xr) mod q

Thus H(M) -xr+ks mod q

Multiply both sides by w=s-1 mod q

H(M)w + xrw k mod q

Exponentiate g to both sides

(gH(M)w + xrw gk) mod p mod q

In a valid signature, gk mod p mod q = r, gx mod p = y

Verify gH(M)wyrw r mod p mod q

slide 18

Security of DSA

Can’t create a valid signature without private key

Can’t change or tamper with signed message

If the same message is signed twice, signatures
are different

• Each signature is based in part on random secret k

Secret k must be different for each signature!

• If k is leaked or if two messages re-use the same k,
attacker can recover secret key x and forge any
signature from then on

slide 19

PS3 Epic Fail

Sony uses ECDSA algorithm to sign authorized
software for Playstation 3

• Basically, DSA based on elliptic curves

 … with the same random value in every signature

Trivial to extract master signing key and sign any
homebrew software – perfect “jailbreak” for PS3

Announced by George “Geohot” Hotz
 and Fail0verflow team in Dec 2010

Q: Why didn’t Sony just revoke the key?

slide 20

Diffie-Hellman Protocol

Alice and Bob never met and share no secrets

Public info: p and g

• p is a large prime number, g is a generator of Zp*

– Zp*={1, 2 … p-1}; aZp* i such that a=gi mod p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p

Compute k=(gx)y=gxy mod p

slide 21

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this

• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

Decisional Diffie-Hellman (DDH) problem:

 given gx and gy, it’s hard to tell the difference
between gxy mod p and gr mod p where r is random

slide 22

Properties of Diffie-Hellman

Assuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol
against passive attackers

• Eavesdropper can’t tell the difference between the
established key and a random value

• Can use the new key for symmetric cryptography

Basic Diffie-Hellman protocol does not provide
authentication

• IPsec combines Diffie-Hellman with signatures, anti-DoS
cookies, etc.

slide 23

Advantages of Public-Key Crypto

Confidentiality without shared secrets

• Very useful in open environments

• Can use this for key establishment, avoiding the
“chicken-or-egg” problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

Authentication without shared secrets

Encryption keys are public, but must be sure that
Alice’s public key is really her public key

• This is a hard problem… Often solved using public-key
certificates

slide 24

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower

• Modular exponentiation is an expensive computation

• Typical usage: use public-key cryptography to establish
a shared secret, then switch to symmetric crypto

– SSL, IPsec, most other systems based on public crypto

Keys are longer

• 2048 bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions

• Factoring, RSA problem, discrete logarithm problem,
decisional Diffie-Hellman problem…

