

Vitaly Shmatikov

CS 361S

Web Authentication and

Session Management

slide 2

Reading Assignment

Read Kaufman, Chapter 25

Read “Dos and Don’ts of Client Authentication
on the Web”

slide 3

HTTP Digest Authentication

client server

Request URL with

GET or POST method

 • HTTP 401 Unauthorised

• Authentication “realm”
 (description of system being accessed)

• Fresh, random nonce

 H3=hash(H1, server nonce, H2)
Recompute H3
and verify

H1=hash(username,

 realm, password)

H2=hash(method, URL)

WWW-Authenticate:

Basic realm="Password Required"

Problems with HTTP Authentication

Can only log out by closing browser

• What if user has multiple accounts? Multiple users of
the same browser?

Cannot customize password dialog

Easily spoofed

In old browsers, defeated by TRACE HTTP

• TRACE causes Web server to reflect HTTP back to
browser, TRACE via XHR reveals password to a script
on the web page, can then be stolen

Hardly used in commercial sites

slide 4

Sessions

A sequence of requests and responses from
one browser to one or more sites

• Can be long or short (Gmail – 2 weeks)

• Without session management, users would have to
constantly re-authenticate

Session management

• Authorize user once

• All subsequent requests are tied to user

slide 5

slide 6

Primitive Browser Session

www.e_buy.com

www.e_buy.com/

shopping.cfm?

pID=269

View catalog

www.e_buy.com/

shopping.cfm?

pID=269&

item1=102030405

www.e_buy.com/

checkout.cfm?

pID=269&

item1=102030405

Check out Select item

Store session information in URL; easily read on network

slide 7

Bad Idea: Encoding State in URL

Unstable, frequently changing URLs

Vulnerable to eavesdropping

There is no guarantee that URL is private

• Early versions of Opera used to send entire browsing
history, including all visited URLs, to Google

slide 8

Storing State in Hidden Forms

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

<FORM METHOD=POST

 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">

 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">

 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">

 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">

 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse

 with leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Change this to 2.00

Bargain shopping!

slide 9

Shopping Cart Form Tampering

 Many Web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for items in an online store. These
parameters can include the item's name, weight, quantity, product ID,
and price. Any application that bases price on a hidden field in an
HTML form is vulnerable to price changing by a remote user. A remote
user can change the price of a particular item they intend to buy, by
changing the value for the hidden HTML tag that specifies the price,
to purchase products at any price they choose.

 Platforms affected:
• 3D3.COM Pty Ltd: ShopFactory 5.8 and earlier @Retail Corporation: @Retail Any version

• Adgrafix: Check It Out Any version Baron Consulting Group: WebSite Tool Any version

• ComCity Corporation: SalesCart Any version Crested Butte Software: EasyCart Any version

• Dansie.net: Dansie Shopping Cart Any version Intelligent Vending Systems: Intellivend Any version

• Make-a-Store: Make-a-Store OrderPage Any version McMurtrey/Whitaker & Associates: Cart32 2.6

• McMurtrey/Whitaker & Associates: Cart32 3.0 pknutsen@nethut.no: CartMan 1.04

• Rich Media Technologies: JustAddCommerce 5.0 SmartCart: SmartCart Any version

• Web Express: Shoptron 1.2

http://xforce.iss.net/xforce/xfdb/4621

slide 10

Other Risks of Hidden Forms

Estonian bank’s Web server…

HTML source reveals a hidden variable that
points to a file name

Change file name to password file

Server displays contents of password file

• Bank was not using shadow password files!

Standard cracking program took 15 minutes to
crack root password

[From “The Art of Intrusion”]

Session Tokens (Identifiers)

Browser Website
GET /index.html

set anonymous session token

GET /opencontent.html

anonymous session token

POST /do-login

Username and password

set logged-in session token

POST /checkout

logged-in session token

check
credentials

validate

token

slide 11

Generating Session Tokens (1)

Option #1: minimal client state

Token = random, unpredictable string

• No data embedded in token

• Server stores all data associated with the session:
user id, login status, login time, etc.

Potential server overhead

• With multiple sessions, lots of database lookups to
retrieve session state

slide 12

Generating Session Tokens (2)

Option #2: more client-side state

Token = [user ID, expiration time, access
rights, user info …]

How to prevent client from tampering with his
session token?

• HMAC(server key, token)

Server must still maintain some user state

• For example, logout status (check on every request)
to prevent usage of unexpired tokens after logout

slide 13

slide 14

FatBrain.com circa 1999

User logs into website with his password,
authenticator token is generated, user is given a
special URL containing the token

• With special URL, user doesn’t need to re-authenticate

– Reasoning: user could not have not known the special URL
without authenticating first. That’s true, BUT…

Tokens are global sequence numbers

• Easy to guess sequence number for another user

• Fix: use random session tokens

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

[Fu et al.]

slide 15

Examples of Weak Tokens

Verizon Wireless: counter

• Log in, get counter, can view sessions of other users

Apache Tomcat: generateSessionID()

• MD5(PRNG) … but weak PRNG

– PRNG = pseudo-random number generator

• Result: predictable SessionID’s

ATT’s iPad site: SIM card ID in the
 request used to populate a Web
 form with the user’s email address

• IDs are serial and guessable

• Brute-force script harvested 114,000 email addresses

41 months in
federal prison

Binding Token to Client’s Machine

Embed machine-specific data in the token…

Client’s IP address

• Harder to use token at another machine if stolen

• If honest client changes IP address during session,
will be logged out for no reason

Client’s browser / user agent

• A weak defense against theft, but doesn’t hurt

HTTPS (TLS) session key

• Same problem as IP address (and even worse)

slide 16

Storing Session Tokens

Embed in URL links

• https://site.com/checkout ? SessionToken=kh7y3b

Browser cookie

• Set-Cookie: SessionToken=fduhye63sfdb

Store in a hidden form field

• <input type=“hidden” name=“sessionid”

 value=“kh7y3b”>

Window.name DOM property

slide 17

Issues

Embedded in URL link

• Token leaks out via HTTP Referer header

Browser cookie

• Browser sends it with every request, even if request
not initiated by the user (cross-site request forgery)

Hidden form field

• Short sessions only

DOM property

• Not private, does not work if user connects from
another window, short sessions only

slide 18

HTTP Referer Header

slide 19

GET /users/shmat HTTP/1.1

200 323

Referer:

http://www.google.com/search?q=shmatikov 361S
solutions&hl=en ...

Referer leaks URL content (including session

tokens) to any destination linked from the site

Typical Redirection Code

If (condition 1)

 redirect (http://site.com/B)

If (condition2)

 redirect (http://site.com/C/?sessionid=Au45fhds)

User not logged in? Redirect to login page.

User not admin? Redirect to access denied page.

User admin? Show the admin menu.

slide 20

XSUH: Cross-Site URL Hijacking

Firefox: modify window.onerror object to trap errors

Learn destination, URL parameters of redirected page

slide 21

http://soroush.secproject.com/downloadable/XSUH_FF_1.pdf

<script>

var destinationPage = 'http:// … your target here …';

window.onerror=fnErrorTrap;

function fnErrorTrap(sMsg, sUrl, sLine){

 alert('Source address was: ' + destinationPage +

 \n\nDestination URL is: ' + sUrl);

 return false;

}

document.write('<script src="'+destinationPage+'"><\/script>')

</script>

This will generate an error (why?)

Source of that error: final page after all redirections

Session token!

Defenses Against XSUH

Do not put session IDs, credentials, tokens, any
important data into URLs

Use POST and JavaScript to send confidential
information to another destination

Use AJAX to send/receive application messages

Frame busting to prevent your page from being
framed by other sites

slide 22

slide 23

Cookies

slide 24

Storing State in Browser Cookies

Set-cookie: price=299.99

User edits the cookie… cookie: price=29.99

What’s the solution?

Add an HMAC to every cookie, computed with
the server’s secret key

• Price=299.99; HMAC(ServerKey, 299.99)

But what if the website changes the price?

slide 25

Web Authentication with Cookies

Authentication system that works over HTTP and
does not require servers to store session data

• … except for logout status

After client successfully authenticates, server
computes an authenticator token and gives it to
the browser as a cookie

• Client should not be able forge authenticator on his own

– Example: HMAC(server’s secret key, session information)

With each request, browser presents the cookie;
server recomputes and verifies the authenticator

• Server does not need to remember the authenticator

slide 26

Typical Session with Cookies

client server

 POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator –
recompute
hash(key, session)

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing authenticator)

slide 27

WSJ.com circa 1999

Idea: use hash(user,key) as authenticator

• Key is secret and known only to the server… without
the key, clients can’t forge authenticators

Implementation: crypt(user,key)

• crypt() is UNIX hash function for passwords

• crypt() truncates its input at 8 characters

– Usernames matching first 8 characters end up with the same
authenticator

• No expiration or revocation

It gets worse… This scheme can be exploited to
extract the server’s secret key

[Fu et al.]

slide 28

Attack

username crypt(username,key,“00”) authenticator cookie

VitalySh1

VitalySh2

008H8LRfzUXvk VitalySh1008H8LRfzUXvk

008H8LRfzUXvk VitalySh2008H8LRfzUXvk

Create an account with a 7-letter user name…

VitalySA 0073UYEre5rBQ Try logging in: access refused

VitalySB 00bkHcfOXBKno Access refused

VitalySC 00ofSJV6An1QE Login successful! 1st key symbol is C

Now a 6-letter user name…
VitalyCA

VitalyCB

001mBnBErXRuc

00T3JLLfuspdo

Access refused

Access refused… and so on

• Only need 128 x 8 queries instead of intended 1288

• 17 minutes with a simple Perl script vs. 2 billion years

.NET 2.0

System.Web.Configuration.MachineKey

• Secret Web server key intended for cookie protection

• Stored on all Web servers in the site

Creating an encrypted cookie with integrity

• HttpCookie cookie = new HttpCookie(name, val);
HttpCookie encodedCookie =
 HttpSecureCookie.Encode (cookie);

Decrypting and validating an encrypted cookie

• HttpSecureCookie.Decode (cookie);

slide 29

Cookie Theft: SideJacking

SideJacking = network eavesdropper steals
cookies sent over a wireless connection

Case 1: a website uses HTTPS for login, the rest
of the session is unencrypted

• Cookies must not be marked as “secure” (why?)

Case 2: accidental HTTPSHTTP downgrade

• Laptop sees Wi-Fi hotspot, tries HTTPS to Web mail

• This fails because first sees hotspot’s welcome page

• Now try HTTP… with unencrypted cookie attached!

• Eavesdropper gets the cookie – user’s mail is pwned

slide 30

Cookie Theft: Surf Jacking

It is possible to force an HTTPSHTTP downgrade

Victim logs into https://bank.com

• Cookie sent back encrypted and stored by browser

Victim visits http://foo.com in another window

Network attacker sends “301 Moved Permanently”
in response to the cleartext request to foo.com

• Response contains header “Location http://bank.com”

Browser thinks foo.com is redirected to bank.com,
starts a new HTTP connection, sends cookie in
the clear – network eavesdropper gets the cookie!

slide 31

http://resources.enablesecurity.com/resources/Surf%20Jacking.pdf

Session Fixation Attacks

Attacker obtains an anonymous session token
(AST) for site.com

Sets user’s session token to attacker’s AST

• URL tokens: trick user into clicking on URL with the
attacker’s token

• Cookie tokens: need an XSS exploit (more later)

User logs into site.com

Attacker’s token becomes logged-in token!

Can use this token to hijack user’s session

slide 32

Preventing Session Fixation

When elevating user from anonymous to
logged-in, always issue a new session token

Once user logs in, token changes to value
unknown to attacker

slide 33

Logout Issues

Functionality: allow login as a different user

Security: prevent others from abusing account

What happens during logout?

1. Delete session token from client

2. Mark session token as expired on server

Many sites forget to mark token as expired,
enabling session hijacking after logout

• Attacker can use old token to access account

slide 34

