

slide 1

Vitaly Shmatikov

CS 361S

Buffer Overflow and

Other Memory Corruption Attacks

slide 2

Reading Assignment

You MUST read Smashing the Stack for Fun and
Profit to understand how to start on the project

Read Once Upon a free()

• Also on malloc() exploitation: Vudo - An Object
Superstitiously Believed to Embody Magical Powers

Read Exploiting Format String Vulnerabilities

Optional reading

• Blended Attacks by Chien and Szor to better understand
how overflows are used by malware

• The Tao of Windows Buffer Overflow as taught by
DilDog from the Cult of the Dead Cow

slide 3

Morris Worm

Released in 1988 by Robert Morris

• Graduate student at Cornell,
 son of NSA chief scientist

• Convicted under Computer Fraud and Abuse Act,
sentenced to 3 years of probation and 400 hours of
community service

• Now a computer science professor at MIT

Morris claimed it was intended to harmlessly
measure the Internet, but it created new copies
as fast as it could and overloaded infected hosts

$10-100M worth of damage

slide 4

Morris Worm and Buffer Overflow

We will look at the Morris worm in more detail
when talking about worms and viruses

One of the worm’s propagation techniques was
a buffer overflow attack against a vulnerable
version of fingerd on VAX systems

• By sending a special string to finger daemon, worm
caused it to execute code creating a new worm copy

• Unable to determine remote OS version, worm also
attacked fingerd on Suns running BSD, causing them
to crash (instead of spawning a new copy)

slide 5

Famous Internet Worms

Morris worm (1988): overflow in fingerd

• 6,000 machines infected (10% of existing Internet)

CodeRed (2001): overflow in MS-IIS server

• 300,000 machines infected in 14 hours

SQL Slammer (2003): overflow in MS-SQL server

• 75,000 machines infected in 10 minutes (!!)

Sasser (2004): overflow in Windows LSASS

• Around 500,000 machines infected Responsible for user

authentication in Windows

slide 6

… And The Band Marches On

Conficker (2008-09): overflow in Windows RPC

• Around 10 million machines infected (estimates vary)

Stuxnet (2009-10): several zero-day overflows +
same Windows RPC overflow as Conficker

• Windows print spooler service

• Windows LNK shortcut display

• Windows task scheduler

Flame (2010-12): same print spooler and LNK
overflows as Stuxnet

• Targeted cyberespionage virus

slide 7

Buffer is a data storage area inside computer
memory (stack or heap)

• Intended to hold pre-defined amount of data

• If executable code is supplied as “data”, victim’s
machine may be fooled into executing it

– Code will self-propagate or give attacker control over machine

• Many attacks do not involve executing “data”

Attack can exploit any memory operation

• Pointer assignment, format strings, memory allocation
and de-allocation, function pointers, calls to library
routines via offset tables …

Memory Exploits

slide 8

Stack Buffers

Suppose Web server contains this function
 void func(char *str) {

 char buf[126];

 strcpy(buf,str);

 }

When this function is invoked, a new frame
(activation record) is pushed onto the stack

Allocate local buffer

(126 bytes reserved on stack)

Copy argument into local buffer

Top of

stack

Stack grows this way

buf sfp
ret
addr str

Local variables

Frame of the
calling function

Execute code
at this address
after func() finishes

Arguments Pointer to
previous
frame

slide 9

What If Buffer Is Overstuffed?

Memory pointed to by str is copied onto stack…
 void func(char *str) {

 char buf[126];

 strcpy(buf,str);

 }

If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

strcpy does NOT check whether the string

at *str contains fewer than 126 characters

buf str

This will be interpreted
as return address!

overflow
Top of

stack
Frame of the
calling function

slide 10

Executing Attack Code

Suppose buffer contains attacker-created string

• For example, str points to a string received from the
network as the URL

When function exits, code in the buffer will be

 executed, giving attacker a shell

• Root shell if the victim program is setuid root

code str Frame of the
calling function

ret

Attacker puts actual assembly

instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

In the overflow, a pointer back into the buffer

appears in the location where the program

expects to find return address

Top of

stack

int foo (void (*funcp)()) {
 char* ptr = point_to_an_array;
 char buf[128];
 gets (buf);
 strncpy(ptr, buf, 8);
 (*funcp)();
}

String
grows

Stack
grows

int bar (int val1) {
 int val2;
 foo (a_function_pointer);
}

Attacker-
controlled
memory

Most popular
target

val1

val2

arguments (funcp)

return address

Saved Frame Pointer

pointer var (ptr)

buffer (buf)

Stack Corruption: General View

slide 11

args (funcp)

return address

SFP

pointer var (ptr)

buffer (buf)

Attack code

① Change the return address to point
to the attack code. After the
function returns, control is
transferred to the attack code.

② … or return-to-libc: use existing
instructions in the code segment
such as system(), exec(), etc. as
the attack code.

①

② set stack pointers to
return to a dangerous
library function

“/bin/sh”

system()

Attack #1: Return Address

slide 12

slide 13

Executable attack code is stored on stack, inside
the buffer containing attacker’s string

• Stack memory is supposed to contain only data, but…

For the basic stack-smashing attack, overflow
portion of the buffer must contain correct address
of attack code in the RET position

• The value in the RET position must point to the
beginning of attack assembly code in the buffer

– Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position
his buffer will be when the function is called

Basic Stack Code Injection

slide 14

Cause: No Range Checking

strcpy does not check input size

• strcpy(buf, str) simply copies memory contents into
buf starting from *str until “\0” is encountered,
ignoring the size of area allocated to buf

Standard C library functions are all unsafe

• strcpy(char *dest, const char *src)

• strcat(char *dest, const char *src)

• gets(char *s)

• scanf(const char *format, …)

• printf(const char *format, …)

slide 15

strncpy(char *dest, const char *src, size_t n)

• If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

• Programmer has to supply the right value of n

Potential overflow in htpasswd.c (Apache 1.3):
 … strcpy(record,user);
 strcat(record,”:”);
 strcat(record,cpw); …

Published “fix” (do you see the problem?):
 … strncpy(record,user,MAX_STRING_LEN-1);
 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),

then appends “:” and hashed password (“cpw”)

slide 16

Published “fix” for Apache htpasswd overflow:
 … strncpy(record,user,MAX_STRING_LEN-1);
 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

 MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1

characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1

characters into buffer

args (funcp)

return address

SFP

pointer var (ptr)

buffer (buf)

 Attack code

Syscall pointer

 Global Offset Table

①

②

Attack #2: Pointer Variables

slide 17

① Change a function pointer
 to point to the attack code

① Any memory, on or off the stack, can be
modified by a statement that stores a
compromised value into the
compromised pointer

strcpy(buf, str);

 *ptr = buf[0];

slide 18

Home-brewed range-checking string copy
 void notSoSafeCopy(char *input) {
 char buffer[512]; int i;

 for (i=0; i<=512; i++)

 buffer[i] = input[i];

 }

 void main(int argc, char *argv[]) {

 if (argc==2)

 notSoSafeCopy(argv[1]);

 }

Off-By-One Overflow

1-byte overflow: can’t change RET, but can
change saved pointer to previous stack frame

• On little-endian architecture, make it point into buffer

• Caller’s RET will be read from the buffer!

 This will copy 513
characters into
buffer. Oops!

 args (funcp)

return address

SFP

pointer var (ptr)

buffer (buf)

Attack code

Fake return

address

Fake SFP

Attack #3: Frame Pointer

Change the caller’s saved frame
pointer to point to attacker-controlled
memory. Caller’s return address will be
read from this memory.

slide 19

Arranged like a

real frame

Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection

• Put malicious code at a predictable location in
memory, usually masquerading as data

• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Idea: prevent execution of untrusted code

• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., Flash, JavaScript)

• Digitally sign all code

• Ensure that all control transfers are into a trusted,
approved code image

slide 20

WX / DEP

Mark all writeable memory locations as non-
executable

• Example: Microsoft’s Data Execution Prevention (DEP)

• This blocks (almost) all code injection exploits

Hardware support

• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)

• Makes memory page non-executable

Widely deployed

• Windows (since XP SP2),

 Linux (via PaX patches),

 OS X (since 10.5)
slide 21

What Does WX Not Prevent?

Can still corrupt stack …

• … or function pointers or critical data on the heap

As long as “saved EIP” points into existing code,
WX protection will not block control transfer

This is the basis of return-to-libc exploits

• Overwrite saved EIP with address of any library
routine, arrange stack to look like arguments

Does not look like a huge threat

• Attacker cannot execute arbitrary code, especially if
system() is not available

slide 22

return-to-libc on Steroids

Overwritten saved EIP need not point to the
beginning of a library routine

Any existing instruction in the code image is fine

• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?

• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (ESP)

– Guess what? Its value is under attacker’s control! (why?)

• Use it as the new value for EIP

– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack

slide 23

Chaining RETs for Fun and Profit

Can chain together sequences ending in RET

• Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

What is this good for?

Answer [Shacham et al.]: everything

• Turing-complete language

• Build “gadgets” for load-store, arithmetic,
 logic, control flow, system calls

• Attack can perform arbitrary computation
 using no injected code at all –
 return-oriented programming

slide 24

[Shacham et al.]

Other Issues with WX / DEP

Some applications require executable stack

• Example: Flash ActionScript, Lisp, other interpreters

Some applications are not linked with /NXcompat

• DEP disabled (e.g., some Web browsers)

JVM makes all its memory RWX – readable,
writable, executable (why?)

• Spray attack code over memory containing Java
objects (how?), pass control to them

“Return” into a memory mapping routine, make
page containing attack code writeable

slide 25

slide 26

Embed “canaries” (stack cookies) in stack frames
and verify their integrity prior to function return

• Any overflow of local variables will damage the canary

Choose random canary string on program start

• Attacker can’t guess what the value of canary will be

Terminator canary: “\0”, newline, linefeed, EOF

• String functions like strcpy won’t copy beyond “\0”

Run-Time Checking: StackGuard

Top of

stack
buf sfp

ret
addr

Local variables

Pointer to
previous
frame

Frame of the
calling function

Return

execution to
this address

canary

StackGuard Implementation

StackGuard requires code recompilation

Checking canary integrity prior to every function
return causes a performance penalty

• For example, 8% for Apache Web server

StackGuard can be defeated

• A single memory write where the attacker controls
both the value and the destination is sufficient

slide 27

Defeating StackGuard

Suppose program contains strcpy(dst,buf) where
attacker controls both dst and buf

• Example: dst is a local pointer variable

slide 28

buf sfp RET

Return execution to
this address

canary dst

sfp RET canary BadPointer, attack code

&RET

Overwrite destination of strcpy with RET position

strcpy will copy

BadPointer here

slide 29

ProPolice / SSP

Rerrange stack layout (requires compiler mod)

args

return address

SFP

CANARY

Arrays

local variables

Stack
growth

 No arrays or pointers

Ptrs, but no arrays

String
growth

Cannot overwrite any pointers

by overflowing an array

[IBM, used in gcc 3.4.1; also MS compilers]

exception handler records

slide 30

What Can Still Be Overwritten?

Other string buffers in the vulnerable function

Any data stored on the stack

• Exception handling records

• Pointers to virtual method tables

– C++: call to a member function passes as an argument “this”
pointer to an object on the stack

– Stack overflow can overwrite this object’s vtable pointer and
make it point into an attacker-controlled area

– When a virtual function is called (how?), control is transferred
to attack code (why?)

– Do canaries help in this case?

 (Hint: when is the integrity of the canary checked?)

slide 31

Litchfield’s Attack

Microsoft Windows 2003 server implements
several defenses against stack overflow

• Random canary (with /GS option in the .NET compiler)

• When canary is damaged, exception handler is called

• Address of exception handler stored on stack above RET

Attack: smash the canary AND overwrite the
pointer to the exception handler with the address
of the attack code

• Attack code must be on heap and outside the module,
or else Windows won’t execute the fake “handler”

• Similar exploit used by CodeRed worm

SafeSEH: Safe Exception Handling

Exception handler record must be on the stack of
the current thread (why?)

Must point outside the stack (why?)

Must point to a valid handler

• Microsoft’s /SafeSEH linker option: header of the binary
lists all valid handlers

Exception handler records must form a linked list,
terminating in FinalExceptionHandler

• Windows Server 2008: SEH chain validation

• Address of FinalExceptionHandler is randomized (why?)

slide 32

SEHOP

SEHOP: Structured Exception Handling
Overwrite Protection (since Win Vista SP1)

Observation: SEH attacks typically corrupt the
“next” entry in SEH list

SEHOP adds a dummy record at top of SEH list

When exception occurs, dispatcher walks up list
and verifies dummy record is there; if not,
terminates process

slide 33

slide 38

Libsafe

Dynamically loaded library – no need to recompile!

Intercepts calls to strcpy(dest, src), other unsafe C
library functions

• Checks if there is sufficient space in current
stack frame |framePointer – dest| > strlen(src)

• If yes, does strcpy; else terminates application

dest ret-addr sfp

top
of

stack
src

 buf ret-addr sfp

libsafe main

Limitations of Libsafe

Protects frame pointer and return address from
being overwritten by a stack overflow

Does not prevent sensitive local variables below
the buffer from being overwritten

Does not prevent overflows on global and
dynamically allocated buffers

slide 39

ASLR: Address Space Randomization

Map shared libraries to a random location in
process memory

• Attacker does not know addresses of executable code

Deployment

• Windows Vista: 8 bits of randomness for DLLs

– If aligned to 64K page in a 16MB region, then 256 choices

• Linux (via PaX): 16 bits of randomness for libraries

• More effective on 64-bit architectures

 Other randomization methods

• Randomize system call ids or instruction set

slide 40

Example: ASLR in Vista

Booting Vista twice loads libraries into different locations:

ASLR is only applied to images for which

the dynamic-relocation flag is set

slide 41

slide 42

Configuration parameters

• Example: directory names that confine remotely
invoked programs to a portion of the file system

Pointers to names of system programs

• Example: replace the name of a harmless script with
an interactive shell

• This is not the same as return-to-libc (why?)

Branch conditions in input validation code

None of these exploits violate the integrity of the
program’s control flow

• Only original program code is executed!

Other Targets of Memory Exploits

slide 43

Example: Web Server Security

CGI scripts are executables on Web server that
can be executed by remote user via a special URL

• http://www.server.com/cgi-bin/SomeProgram

Don’t want remote users executing arbitrary
programs with the Web server’s privileges, need
to restrict which programs can be executed

CGI-BIN is the directory name which is always
prepended to the name of the CGI script

• If CGI-BIN is “/usr/local/httpd/cgi-bin”, the above URL
will execute /usr/local/httpd/cgi-bin/SomeProgram

slide 44

Exploiting Null HTTP Heap Overflow

Null HTTPD had a heap overflow vulnerability

• When a corrupted buffer is freed, an overflown value is
copied to a location whose address is also read from an
overflown memory area

• This enables the attacker to write an arbitrary value into
a memory location of his choice

Standard exploit: write address of attack code into
the table containing addresses of library functions

• Transfers control to attacker’s code next time the library
function is called

Alternative: overwrite the value of CGI-BIN

slide 45

Null HTTP CGI-BIN Exploit

slide 46

Another Web Server: GHTTPD

Check that URL doesn’t contain “/..”

ptr changes after it was checked

but before it was used! (Time-Of-Check-To-Time-Of-Use attack)

Register containing pointer to URL
is pushed onto stack…

… overflown

… and read from stack

At this point, overflown ptr may point
to a string containing “/..”

slide 47

SSH Authentication Code

Loop until one of
the authentication
methods succeeds

detect_attack() prevents
checksum attack on SSH1…

…and also contains an
overflow bug which permits
the attacker to put any value
into any memory location

write 1 here

 Break out of authentication
loop without authenticating
properly

slide 48

Reducing Lifetime of Critical Data

Reset flag here, right before
doing the checks

slide 49

Overflowing buffers on heap can change pointers
that point to important data

• Illegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use it to
write into a normally inaccessible file

– Example: replace a filename pointer with a pointer into a
memory location containing the name of a system file (for
example, instead of temporary file, write into AUTOEXEC.BAT)

Sometimes can transfer execution to attack code

• Example: December 2008 attack on XML parser in
Internet Explorer 7 - see
http://isc.sans.org/diary.html?storyid=5458

Heap Overflow

vtable

Function Pointers on the Heap

Compiler-generated function pointers
(e.g., virtual method table in C++ or JavaScript code)

Suppose vtable is on the heap next to a string object:

ptr

data

Object T FP1

FP2

FP3

vtable

method #1

method #2

method #3

p
tr

buf[256]

d
a
ta

object T
slide 50

Heap-Based Control Hijacking

Compiler-generated function pointers
(e.g., virtual method table in C++ code)

Suppose vtable is on the heap next to a string object:

ptr

data

Object T FP1

FP2

FP3

vtable

method #1

method #2

method #3

p
tr

buf[256]

d
a
ta

object T

vtable

slide 51

shell
code

Problem?

 <SCRIPT language="text/javascript">

 shellcode = unescape("%u4343%u4343%...");

 overflow-string = unescape(“%u2332%u4276%...”);

 cause-overflow(overflow-string); // overflow buf[]

 </SCRIPT?

p
tr

buf[256]

d
a
ta

object T

vtable

slide 52

shell
code

Where will the browser place

the shellcode on the heap???

slide 53

Force JavaScript JiT (“just-in-time” compiler) to
fill heap with executable shellcode, then point
SFP or vtable ptr anywhere in the spray area

Heap Spraying
h
e
a
p

NOP slide shellcode

execute enabled execute enabled

execute enabled execute enabled

execute enabled execute enabled

 var nop = unescape(“%u9090%u9090”)

 while (nop.length < 0x100000) nop += nop

 var shellcode = unescape("%u4343%u4343%...");

 var x = new Array ()

 for (i=0; i<1000; i++) {

 x[i] = nop + shellcode;

 }

Pointing a function pointer anywhere in the heap will
cause shellcode to execute

JavaScript Heap Spraying

slide 54

Use a sequence of JavaScript allocations and free’s
to make the heap look like this:

Allocate vulnerable buffer in JavaScript and
 cause overflow

slide 55

Placing Vulnerable Buffer
[Safari PCRE exploit, 2008]

object O

free blocks

heap

Memory allocation: malloc(size_t n)

• Allocates n bytes and returns a pointer to the
allocated memory; memory not cleared

• Also calloc(), realloc()

Memory deallocation: free(void * p)

• Frees the memory space pointed to by p, which must
have been returned by a previous call to malloc(),
calloc(), or realloc()

• If free(p) has already been called before, undefined
behavior occurs

• If p is NULL, no operation is performed

Dynamic Memory Management in C

slide 56

Memory Management Errors

Initialization errors

Failing to check return values

Writing to already freed memory

Freeing the same memory more than once

Improperly paired memory management
functions (example: malloc / delete)

Failure to distinguish scalars and arrays

Improper use of allocation functions

All result in exploitable vulnerabilities

slide 57

Doug Lea’s Memory Allocator

The GNU C library and most versions of Linux
are based on Doug Lea’s malloc (dlmalloc) as
the default native version of malloc

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

P

Size or last 4 bytes of prev.

Size

User data

Last 4 bytes of user data

P

Allocated chunk Free chunk

slide 58

Free Chunks in dlmalloc

Organized into circular double-linked lists (bins)

Each chunk on a free list contains forward and
back pointers to the next and previous chunks
in the list

• These pointers in a free chunk occupy the same eight
bytes of memory as user data in an allocated chunk

Chunk size is stored in the last four bytes of the
free chunk

• Enables adjacent free chunks to be consolidated to
avoid fragmentation of memory

slide 59

A List of Free Chunks in dlmalloc

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list

Back pointer to last chunk in list

head

element

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list

Back pointer to last chunk in list

Forward pointer to first chunk in list

Back pointer to last chunk in list

head

element

slide 60

Responding to Malloc

Best-fit method

• An area with m bytes is selected, where m is the
smallest available chunk of contiguous memory equal
to or larger than n (requested allocation)

First-fit method

• Returns the first chunk encountered containing n or
more bytes

Prevention of fragmentation

• Memory manager may allocate chunks that are larger
than the requested size if the space remaining is too
small to be useful

slide 61

The Unlink Macro

#define unlink(P, BK, FD) {

 FD = P->fd;

 BK = P->bk;

 FD->bk = BK;

 BK->fd = FD;

}

slide 62

Removes a chunk from a free list -when?

Hmm… memory copy…

Address of destination read
 from the free chunk

The value to write there also read
 from the free chunk

What if the allocator is confused

and this chunk has actually

been allocated…

… and user data written into it?

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

<-P

:

:

<-BK (2)

<-FD (1)

(4) BK->fd = FD;

(1) FD = P->fd;

(2) BK = P->bk;

(3) FD->bk = BK;

Before

Unlink

Results

of Unlink

(4)

(3)

Example of Unlink

slide 63

What if this area

contained user data?

Freeing the same chunk of memory twice,
without it being reallocated in between

Start with a simple case:
• The chunk to be freed is isolated in memory

• The bin (double-linked list) into which the chunk will be
placed is empty

Double-Free Vulnerabilities

slide 64

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

User data

:

P->

bin->

P

slide 65

Empty Bin and Allocated Chunk

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After First Call to free()

slide 66

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Second Call to free()

slide 67

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After malloc() Has Been Called

slide 68

After malloc, user data

will be written here

This chunk is

unlinked from

free list… how?

Forward pointer to first chunk in list

Back pointer to last chunk in list

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list

Back pointer to previous chunk in list

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Another malloc()

slide 69

After another malloc,

pointers will be read

from here as if it were

a free chunk (why?)

Same chunk will

be returned…

(why?)

One will be interpreted as address,

the other as value (why?)

First chunk free’d for the second time

This malloc returns a pointer to the same
chunk as was referenced by first

The GOT address of the strcpy() function
(minus 12) and the shellcode location are
placed into this memory

This malloc returns same chunk yet again (why?)
unlink() macro copies the address of the shellcode
into the address of the strcpy() function in the
Global Offset Table - GOT (how?)

When strcpy() is called, control is transferred
to shellcode… needs to jump over the first 12
bytes (overwritten by unlink)

Sample Double-Free Exploit Code

slide 70

 1. static char *GOT_LOCATION = (char *)0x0804c98c;
 2. static char shellcode[] =
 3. "\xeb\x0cjump12chars_"
 4. "\x90\x90\x90\x90\x90\x90\x90\x90"
 5.
 6. int main(void){
 7. int size = sizeof(shellcode);
 8. void *shellcode_location;
 9. void *first, *second, *third, *fourth;
10. void *fifth, *sixth, *seventh;
11. shellcode_location = (void *)malloc(size);
12. strcpy(shellcode_location, shellcode);
13. first = (void *)malloc(256);
14. second = (void *)malloc(256);
15. third = (void *)malloc(256);
16. fourth = (void *)malloc(256);
17. free(first);
18. free(third);
19. fifth = (void *)malloc(128);
20. free(first);
21. sixth = (void *)malloc(256);
22. *((void **)(sixth+0))=(void *)(GOT_LOCATION-12);
23. *((void **)(sixth+4))=(void *)shellcode_location;
24. seventh = (void *)malloc(256);
25. strcpy(fifth, "something");
26. return 0;
27. }

slide 71

Use-After-Free in the Real World

MICROSOFT WARNS OF NEW IE ZERO DAY, EXPLOIT IN THE WILD

[ThreatPost, September 17, 2013]

The attacks are targeting IE 8 and 9 and there’s no patch for the vulnerability right
now… The vulnerability exists in the way that Internet Explorer accesses an object in
memory that has been deleted or has not been properly allocated. The vulnerability
may corrupt memory in a way that could allow an attacker to execute arbitrary code…

The exploit was attacking a Use After Free vulnerability in IE’s HTML rendering
engine (mshtml.dll) and was implemented entirely in Javascript (no dependencies on
Java, Flash etc), but did depend on a Microsoft Office DLL which was not compiled
with ASLR (Address Space Layout Randomization) enabled.

The purpose of this DLL in the context of this exploit is to bypass ASLR by providing
executable code at known addresses in memory, so that a hardcoded ROP (Return
Oriented Programming) chain can be used to mark the pages containing shellcode (in
the form of Javascript strings) as executable…

The most likely attack scenarios for this vulnerability are the typical link in an email or
drive-by download.

slide 72

Two’s Complement

Binary representation of negative integers

Represent X (where X<0) as 2N-|X|

N is word size (e.g., 32 bits on x86 architecture)

0 0 0 0 … 0 1

0 1 1 1 … 1 1

1 1 1 1 … 1 1

1 1 1 1 … 1 0

1 0 0 0 … 0 0

1

231-1

-1

-2

-231

 231 ??

slide 73

Integer Overflow

static int getpeername1(p, uap, compat) {

// In FreeBSD kernel, retrieves address of peer to which a socket is connected

 …

 struct sockaddr *sa;

 …

 len = MIN(len, sa->sa_len);

 … copyout(sa, (caddr_t)uap->asa, (u_int)len);

 …

}

Checks that “len” is not too big

Copies “len” bytes from
kernel memory to user space

Negative “len” will always pass this check…

… interpreted as a huge
unsigned integer here

… will copy up to 4G of
 kernel memory

slide 74

ActionScript Exploit

ActionScript 3 is a scripting language for Flash

• Basically, JavaScript for Flash animations

• For performance, Flash 9 and higher compiles scripts
into bytecode for ActionScript Virtual Machine (AVM2)

Flash plugins are installed on millions of
browsers, thus a perfect target for attack

• Different Flash binaries are used for Internet Explorer
and Firefox, but this turns out not to matter

Exploit published in April 2008

• “Leveraging the ActionScript Virtual Machine”

[Dowd]

call SWF_GetEncodedInteger ; Scene Count

mov edi, [ebp+arg_0]

mov [esi+4], eax

mov ecx, [ebx+8]

sub ecx, [ebx+4]

cmp eax, ecx

jg loc_30087BB4

…

push eax

call mem_Calloc

Processing SWF Scene Records (1)

How much memory is neded to store scenes

Code that allocates memory
for scene records:

Total size of the buffer
Offset into the buffer

Is there enough memory in the buffer?
(signed comparison)

What if scene count is negative?

Tell mem_Calloc how many bytes to allocate

Interprets its argument as unsigned integer

Supplied as part of SWF file from
 potentially malicious website

mem_Calloc fails (why?) and
returns NULL

slide 75

Processing SWF Scene Records (2)

Scene records are copied as follows:

• Start with pointer P returned by allocator

• Loop through and copy scenes until count ≤ 0

• Copy frame count into P + offset, where offset is
determined by scene count

– Frame count also comes from the SWF file

– It is a “short” (16-bit) value, but written as a 32-bit DWORD

Attacker gains the ability to write one short value
into any location in memory (why?)

• … subject to some restrictions (see paper)

• But this is not enough to hijack control directly (why?)

slide 76

slide 77

ActionScript Virtual Machine (AVM2)

Register-based VM

• Bytecode instructions write and read from “registers”

“Registers”, operand stack, scope stack allocated
on the same runtime stack as used by Flash itself

• “Registers” are mapped to locations on the stack and
accessed by index (converted into memory offset)

• This is potentially dangerous (why?)

Malicious Flash script could hijack browser’s host

• Malicious bytecode can write into any location on the
stack by supplying a fake register index

• This would be enough to take control (how?)

slide 78

AVM2 Verifier

ActionScript code is verified before execution

All bytecodes must be valid

• Throw an exception if encountering an invalid bytecode

All register accesses correspond to valid locations
on the stack to which registers are mapped

For every instruction, calculate the number of
operands, ensure that operands of correct type
will be on the stack when it is executed

All values are stored with correct type information

• Encoded in bottom 3 bits

Relevant Verifier Code

…

if(AS3_argmask[opCode] == 0xFF) {

 … throw exception …

}

…

opcode_getArgs(…)

…

void opcode_getArgs(…) {

 DWORD mask=AS3_argmask[opCode];

 …

 if(mask <=0) { … return … }

 … *arg_dword1 = SWF_GetEncodedInteger(&ptr);

 if(mask>1) *arg_dword2 = SWF_GetEncodedInteger(&ptr);

}

Invalid bytecode

Determine operands

Number of operands for each opcode
is defined in AS3_argmask array

slide 79

slide 80

Executing Invalid Opcodes

If interpreter encounters an invalid opcode, it
silently skips it and continues executing

• Doesn’t really matter because this can’t happen

– Famous last words…

• AS3 code is executed only after it has been verified,
and verifier throws an exception on invalid bytecode

But if we could somehow trick the verifier…

• Bytes after the opcode are treated as data (operands)
by the verifier, but as executable code by interpreter

• This is an example of a TOCTTOU (time-of-check-to-
time-of-use) vulnerability

slide 81

Breaking AVM2 Verifier

slide 82

Breaking AVM2 Verifier

Pick an invalid opcode

Use the ability to write into arbitrary memory to
change the AS3_argmask of that opcode from
0xFF to something else

AVM2 verifier will treat it as normal opcode and
skip subsequent bytes as operands

• How many? This is also determined by AS3_argmask!

AVM2 interpreter, however, will skip the invalid
opcode and execute those bytes

Can now execute unverified ActionScript code

slide 83

Further Complications

Can execute only a few unverified bytecodes at a
time (why?)

• Use multiple “marker” opcodes with overwritten masks

Cannot directly overwrite saved EIP on the
evaluation stack with the address of shellcode
because 3 bits are clobbered by type information

• Stack contains a pointer to current bytecode (codePtr)

• Move it from one “register” to another, overwrite EIP

• Bytecode stream pointed to by codePtr contains a jump
to the actual shellcode

Read the paper for more details

slide 84

Variable Arguments in C

In C, can define a function with a variable
number of arguments

• Example: void printf(const char* format, …)

Examples of usage:

Format specification encoded by
special % characters

• %d,%i,%o,%u,%x,%X – integer argument
• %s – string argument
• %p – pointer argument (void *)
• Several others

Implementation of Variable Args

Special functions va_start, va_arg, va_end
compute arguments at run-time

slide 85

printf has an internal
stack pointer

slide 86

Frame with Variable Args

va_start computes
location on the stack
past last statically
known argument

va_arg(ap,type)
retrieves next arg
from offset ap

slide 87

Proper use of printf format string:
 … int foo=1234;
 printf(“foo = %d in decimal, %X in hex”,foo,foo); …

– This will print

 foo = 1234 in decimal, 4D2 in hex

Sloppy use of printf format string:
 … char buf[13]=“Hello, world!”;
 printf(buf);

 // should’ve used printf(“%s”, buf); …

– If the buffer contains a format symbol starting with %, location
 pointed to by printf’s internal stack pointer will be interpreted
 as an argument of printf. This can be exploited to move
 printf’s internal stack pointer! (how?)

Format Strings in C

slide 88

%n format symbol tells printf to write the number
of characters that have been printed

 … printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address

– This writes 14 into myVar (“Overflow this!” has 14 characters)

What if printf does not have an argument?
 … char buf[16]=“Overflow this!%n”;
 printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will
be interpreted as address into which the number of characters
will be written!

Writing Stack with Format Strings

slide 89

Using %n to Mung Return Address

RET “… attackString%n”, attack code &RET

Overwrite location under printf’s stack

pointer with RET address;

printf(buffer) will write the number of

characters in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied

input string

Number of characters in

attackString must be

equal to … what?

See “Exploiting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols: %Mx will print exactly 4M bytes (taking them
from the stack). Attack string should contain enough “%Mx” so that the number of characters
printed is equal to the most significant byte of the address of the attack code.

Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, thus
replacing RET with the address of attack code byte by byte.

This portion contains

enough % symbols

to advance printf’s

internal stack pointer

