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Reading Assignment 

You MUST read Smashing the Stack for Fun and 
Profit to understand how to start on the project 

Read Once Upon a free() 

• Also on malloc() exploitation: Vudo - An Object 
Superstitiously Believed to Embody Magical Powers 

Read Exploiting Format String Vulnerabilities 

Optional reading  

• Blended Attacks by Chien and Szor to better understand 
how overflows are used by malware 

• The Tao of Windows Buffer Overflow as taught by 
DilDog from the Cult of the Dead Cow 
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Morris Worm 

Released in 1988 by Robert Morris 

• Graduate student at Cornell,  
   son of NSA chief scientist 

• Convicted under Computer Fraud and Abuse Act, 
sentenced to 3 years of probation and 400 hours of 
community service 

• Now a computer science professor at MIT 

Morris claimed it was intended to harmlessly 
measure the Internet, but it created new copies 
as fast as it could and overloaded infected hosts 

$10-100M worth of damage 
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Morris Worm and Buffer Overflow 

We will look at the Morris worm in more detail 
when talking about worms and viruses 

One of the worm’s propagation techniques was 
a buffer overflow attack against a vulnerable 
version of fingerd on VAX systems 

• By sending a special string to finger daemon, worm 
caused it to execute code creating a new worm copy 

• Unable to determine remote OS version, worm also 
attacked fingerd on Suns running BSD, causing them 
to crash (instead of spawning a new copy) 
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Famous Internet Worms 

Morris worm (1988): overflow in fingerd 

• 6,000 machines infected (10% of existing Internet) 

CodeRed (2001): overflow in MS-IIS server 

• 300,000 machines infected in 14 hours 

SQL Slammer (2003): overflow in MS-SQL server 

• 75,000 machines infected in 10 minutes (!!) 

Sasser (2004): overflow in Windows LSASS 

• Around 500,000 machines infected Responsible for user  

authentication in Windows 
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… And The Band Marches On 

Conficker (2008-09): overflow in Windows RPC 

• Around 10 million machines infected (estimates vary) 

Stuxnet (2009-10): several zero-day overflows + 
same Windows RPC overflow as Conficker  

• Windows print spooler service 

• Windows LNK shortcut display 

• Windows task scheduler 

Flame (2010-12): same print spooler and LNK 
overflows as Stuxnet 

• Targeted cyberespionage virus 
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Buffer is a data storage area inside computer 
memory (stack or heap) 

• Intended to hold pre-defined amount of data 

• If executable code is supplied as “data”, victim’s 
machine may be fooled into executing it 

– Code will self-propagate or give attacker control over machine 

• Many attacks do not involve executing “data”  

Attack can exploit any memory operation 

• Pointer assignment, format strings, memory allocation 
and de-allocation, function pointers, calls to library 
routines via offset tables … 

Memory Exploits 
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Stack Buffers 

Suppose Web server contains this function 
  void func(char *str) { 

           char buf[126]; 

           strcpy(buf,str); 

      } 

When this function is invoked, a new frame 
(activation record) is pushed onto the stack 

Allocate local buffer 

(126 bytes reserved on stack) 

Copy argument into local buffer 

 

 

Top of 

stack 

 
Stack grows this way 

buf sfp 
ret 
addr str 

 

Local variables 

 
Frame of the 
calling function 

 

Execute code  
at this address 
after func() finishes 

 

Arguments Pointer to 
previous 
frame 
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What If Buffer Is Overstuffed? 

Memory pointed to by str is copied onto stack… 
  void func(char *str) { 

           char buf[126]; 

           strcpy(buf,str); 

      } 

If a string longer than 126 bytes is copied into 
buffer, it will overwrite adjacent stack locations 

strcpy does NOT check whether the string  

at *str contains fewer than 126 characters 

 

 

buf str 

 

This will be interpreted 
as return address! 

overflow 
Top of 

stack 
Frame of the 
calling function 
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Executing Attack Code 

Suppose buffer contains attacker-created string 

• For example, str points to a string received from the 
network as the URL 

 

 

 

 

When function exits, code in the buffer will be  

    executed, giving attacker a shell 

• Root shell if the victim program is setuid root 

 

 

code str Frame of the 
calling function 

ret 

Attacker puts actual assembly  

instructions into his input string, e.g., 

binary code of execve(“/bin/sh”) 

In the overflow, a pointer back into the buffer  

appears in the location where the program 

expects to find return address 

 
Top of 

stack 



 

 
int foo (void (*funcp)()) { 
    char* ptr = point_to_an_array; 
    char buf[128]; 
    gets (buf); 
    strncpy(ptr, buf, 8); 
    (*funcp)(); 
} 

 

String 
grows 

 

Stack 
grows 

int bar (int val1) { 
    int  val2; 
    foo (a_function_pointer); 
} 

Attacker-
controlled 
memory 

Most popular 
target 

val1 

val2 

arguments       (funcp) 

return address 

Saved Frame Pointer 

pointer var       (ptr) 

buffer               (buf) 

Stack Corruption: General View 
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args                  (funcp) 

return address 

SFP 

pointer var       (ptr) 

buffer               (buf) 

Attack code 

① Change the return address to point 
to the attack code. After the 
function returns, control is 
transferred to the attack code. 

② … or return-to-libc: use existing 
instructions in the code segment 
such as system(), exec(), etc. as 
the attack code. 

① 

② set stack pointers to 
return to a dangerous 
library function 

“/bin/sh” 

system() 

 

 

 

Attack #1: Return Address 
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Executable attack code is stored on stack, inside 
the buffer containing attacker’s string  

• Stack memory is supposed to contain only data, but… 

For the basic stack-smashing attack, overflow 
portion of the buffer must contain correct address 
of attack code in the RET position 

• The value in the RET position must point to the 
beginning of attack assembly code in the buffer 

– Otherwise application will crash with segmentation violation 

• Attacker must correctly guess in which stack position 
his buffer will be when the function is called 

Basic Stack Code Injection 
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Cause: No Range Checking 

strcpy does not check input size 

• strcpy(buf, str) simply copies memory contents into 
buf starting from *str until “\0” is encountered, 
ignoring the size of area allocated to buf 

Standard C library functions are all unsafe 

• strcpy(char *dest, const char *src) 

• strcat(char *dest, const char *src) 

• gets(char *s) 

• scanf(const char *format, …) 

• printf(const char *format, …)  



 

slide 15 

strncpy(char *dest, const char *src, size_t n) 

• If strncpy is used instead of strcpy, no more than n 
characters will be copied from *src to *dest 

• Programmer has to supply the right value of n 

Potential overflow in htpasswd.c (Apache 1.3): 
  … strcpy(record,user);  
      strcat(record,”:”); 
         strcat(record,cpw); … 

Published “fix” (do you see the problem?): 
   … strncpy(record,user,MAX_STRING_LEN-1); 
         strcat(record,”:”); 
         strncat(record,cpw,MAX_STRING_LEN-1); … 

Does Range Checking Help? 

 

Copies username (“user”) into buffer (“record”), 

then appends “:” and hashed password (“cpw”)  
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Published “fix” for Apache htpasswd overflow: 
   … strncpy(record,user,MAX_STRING_LEN-1); 
         strcat(record,”:”); 
         strncat(record,cpw,MAX_STRING_LEN-1); … 

Misuse of strncpy in htpasswd “Fix” 

 

 

 

 MAX_STRING_LEN bytes allocated for record buffer 

contents of *user 

Put up to MAX_STRING_LEN-1 

characters into buffer 

: 

Put “:” 

contents of *cpw 

Again put up to MAX_STRING_LEN-1 

characters into buffer 



 

args               (funcp) 

return address 

SFP 

pointer var       (ptr) 

buffer               (buf) 

 Attack code 

Syscall pointer 

  Global Offset Table 

①   

②   

Attack #2: Pointer Variables 
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① Change a function pointer  
     to point to the attack code  

① Any memory, on or off the stack, can be 
modified by a statement that stores a 
compromised value into the 
compromised pointer 

 
strcpy(buf, str); 

      *ptr = buf[0]; 
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Home-brewed range-checking string copy 
   void notSoSafeCopy(char *input) { 
          char buffer[512]; int i;  
 
             for (i=0; i<=512; i++) 

                 buffer[i] = input[i];  

        } 

        void main(int argc, char *argv[]) { 

             if (argc==2)  

                notSoSafeCopy(argv[1]); 

        } 

Off-By-One Overflow 

 

1-byte overflow: can’t change RET, but can 
change saved pointer to previous stack frame 

• On little-endian architecture, make it point into buffer 

• Caller’s RET will be read from the buffer! 

 This will copy 513 
characters into 
buffer. Oops! 



 

 args                 (funcp) 

return address 

SFP 

pointer var       (ptr) 

buffer               (buf) 

Attack code 

 

Fake return 

address 

Fake SFP 

Attack #3: Frame Pointer 

Change the caller’s saved frame 
pointer to point to attacker-controlled  
memory. Caller’s return address will be  
read from this memory. 
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Arranged like a  

real frame 

 



 

Buffer Overflow: Causes and Cures 

Typical memory exploit involves code injection 

• Put malicious code at a predictable location in 
memory, usually masquerading as data 

• Trick vulnerable program into passing control to it 

– Overwrite saved EIP, function callback pointer, etc. 

Idea: prevent execution of untrusted code 

• Make stack and other data areas non-executable 

– Note: messes up useful functionality (e.g., Flash, JavaScript) 

• Digitally sign all code 

• Ensure that all control transfers are into a trusted, 
approved code image 
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WX / DEP 

Mark all writeable memory locations as non-
executable 

• Example: Microsoft’s Data Execution Prevention (DEP) 

• This blocks (almost) all code injection exploits 

Hardware support 

• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs) 

• Makes memory page non-executable 

Widely deployed 

• Windows (since XP SP2),  

   Linux (via PaX patches),  

   OS X (since 10.5) 
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What Does WX Not Prevent? 

Can still corrupt stack … 

• … or function pointers or critical data on the heap 

As long as “saved EIP” points into existing code, 
WX protection will not block control transfer 

This is the basis of return-to-libc exploits 

• Overwrite saved EIP with address of any library 
routine, arrange stack to look like arguments 

Does not look like a huge threat 

• Attacker cannot execute arbitrary code, especially if 
system() is not available 
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return-to-libc on Steroids 

Overwritten saved EIP need not point to the 
beginning of a library routine 

Any existing instruction in the code image is fine 

• Will execute the sequence starting from this instruction 

What if instruction sequence contains RET? 

• Execution will be transferred… to where? 

• Read the word pointed to by stack pointer (ESP) 

– Guess what?  Its value is under attacker’s control!  (why?)  

• Use it as the new value for EIP 

– Now control is transferred to an address of attacker’s choice! 

• Increment ESP to point to the next word on the stack 
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Chaining RETs for Fun and Profit 

Can chain together sequences ending in RET 

• Krahmer, “x86-64 buffer overflow exploits and the 
borrowed code chunks exploitation technique” (2005) 

What is this good for? 

Answer [Shacham et al.]: everything 

• Turing-complete language 

• Build “gadgets” for load-store, arithmetic, 
   logic, control flow, system calls 

• Attack can perform arbitrary computation 
   using no injected code at all – 
   return-oriented programming  
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[Shacham et al.] 



 

Other Issues with WX / DEP 

Some applications require executable stack 

• Example: Flash ActionScript, Lisp, other interpreters 

Some applications are not linked with /NXcompat 

• DEP disabled (e.g., some Web browsers) 

JVM makes all its memory RWX – readable, 
writable, executable (why?) 

• Spray attack code over memory containing Java 
objects (how?), pass control to them 

“Return” into a memory mapping routine, make 
page containing attack code writeable  
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Embed “canaries” (stack cookies) in stack frames 
and verify their integrity prior to function return 

• Any overflow of local variables will damage the canary 

 

 

 

 

Choose random canary string on program start 

• Attacker can’t guess what the value of canary will be 

Terminator canary: “\0”, newline, linefeed, EOF 

• String functions like strcpy won’t copy beyond “\0” 

Run-Time Checking: StackGuard 

 

 

Top of 

stack 
buf sfp 

ret 
addr 

 

Local variables 

 

Pointer to 
previous 
frame 

Frame of the 
calling function 

 
Return 

execution to 
this address 

 
canary 



 

StackGuard Implementation 

StackGuard requires code recompilation 

Checking canary integrity prior to every function 
return causes a performance penalty 

• For example, 8% for Apache Web server 

StackGuard can be defeated 

• A single memory write where the attacker controls 
both the value and the destination is sufficient 
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Defeating StackGuard 

Suppose program contains strcpy(dst,buf) where 
attacker controls both dst and buf 

• Example: dst is a local pointer variable 
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buf sfp RET 

 

Return execution to 
this address 

canary dst 

 

 

sfp RET canary BadPointer, attack code 
 

&RET 

Overwrite destination of strcpy with RET position 

 

strcpy will copy  

BadPointer here 
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ProPolice / SSP 

Rerrange stack layout (requires compiler mod) 

args 

return address 

SFP 

CANARY 

Arrays 

local variables 

 

Stack 
growth 

 No arrays or pointers 

Ptrs, but no arrays  

 
String 
growth 

Cannot overwrite any pointers 

by overflowing an array 

[IBM, used in gcc 3.4.1; also MS compilers] 

exception handler records 
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What Can Still Be Overwritten? 

Other string buffers in the vulnerable function 

Any data stored on the stack 

• Exception handling records 

• Pointers to virtual method tables 

– C++: call to a member function passes as an argument “this” 
pointer to an object on the stack 

– Stack overflow can overwrite this object’s vtable pointer and 
make it point into an attacker-controlled area 

– When a virtual function is called (how?), control is transferred 
to attack code (why?) 

– Do canaries help in this case?  

   (Hint: when is the integrity of the canary checked?) 
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Litchfield’s Attack 

Microsoft Windows 2003 server implements 
several defenses against stack overflow 

• Random canary (with /GS option in the .NET compiler) 

• When canary is damaged, exception handler is called 

• Address of exception handler stored on stack above RET 

Attack: smash the canary AND overwrite the 
pointer to the exception handler with the address 
of the attack code 

• Attack code must be on heap and outside the module, 
or else Windows won’t execute the fake “handler” 

• Similar exploit used by CodeRed worm 



 

SafeSEH: Safe Exception Handling 

Exception handler record must be on the stack of 
the current thread (why?)   

Must point outside the stack (why?)  

Must point to a valid handler 

• Microsoft’s /SafeSEH linker option: header of the binary 
lists all valid handlers 

Exception handler records must form a linked list, 
terminating in FinalExceptionHandler 

• Windows Server 2008: SEH chain validation 

• Address of FinalExceptionHandler is randomized (why?) 
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SEHOP   

SEHOP: Structured Exception Handling 
Overwrite Protection (since Win Vista SP1) 

Observation: SEH attacks typically corrupt the 
“next” entry in SEH list 

SEHOP adds a dummy record at top of SEH list 

When exception occurs, dispatcher walks up list 
and verifies dummy record is there; if not, 
terminates process 
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Libsafe 

Dynamically loaded library – no need to recompile! 

Intercepts calls to strcpy(dest, src), other unsafe C 
library functions 

• Checks if there is sufficient space in current 
stack frame |framePointer – dest| > strlen(src) 

• If yes, does strcpy; else terminates application   

dest ret-addr sfp  
 

 

 

top 
of 

stack 
src 

 
 buf ret-addr sfp 

  

libsafe main 

 
 

 

 
 

 

  



 

Limitations of Libsafe 

Protects frame pointer and return address from 
being overwritten by a stack overflow 

Does not prevent sensitive local variables below 
the buffer from being overwritten 

Does not prevent overflows on global and 
dynamically allocated buffers 
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ASLR: Address Space Randomization 

Map shared libraries to a random location in 
process memory 

• Attacker does not know addresses of executable code 

Deployment 

• Windows Vista: 8 bits of randomness for DLLs 

– If aligned to 64K page in a 16MB region, then 256 choices 

• Linux (via PaX): 16 bits of randomness for libraries 

• More effective on 64-bit architectures 

 Other randomization methods 

• Randomize system call ids or instruction set 
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Example: ASLR in Vista 

Booting Vista twice loads libraries into different locations: 

ASLR is only applied to images for which  

the dynamic-relocation flag is set 

 

 

slide 41 



 

slide 42 

Configuration parameters 

• Example: directory names that confine remotely 
invoked programs to a portion of the file system 

Pointers to names of system programs 

• Example: replace the name of a harmless script with 
an interactive shell 

• This is not the same as return-to-libc (why?) 

Branch conditions in input validation code 

None of these exploits violate the integrity of the 
program’s control flow 

• Only original program code is executed! 

 

Other Targets of Memory Exploits 
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Example: Web Server Security 

CGI scripts are executables on Web server that 
can be executed by remote user via a special URL 

• http://www.server.com/cgi-bin/SomeProgram 

Don’t want remote users executing arbitrary 
programs with the Web server’s privileges, need 
to restrict which programs can be executed 

CGI-BIN is the directory name which is always 
prepended to the name of the CGI script 

• If CGI-BIN is “/usr/local/httpd/cgi-bin”, the above URL 
will execute /usr/local/httpd/cgi-bin/SomeProgram 
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Exploiting Null HTTP Heap Overflow 

Null HTTPD had a heap overflow vulnerability 

• When a corrupted buffer is freed, an overflown value is 
copied to a location whose address is also read from an 
overflown memory area 

• This enables the attacker to write an arbitrary value into 
a memory location of his choice 

Standard exploit: write address of attack code into 
the table containing addresses of library functions 

• Transfers control to attacker’s code next time the library 
function is called 

Alternative: overwrite the value of CGI-BIN 
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Null HTTP CGI-BIN Exploit 
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Another Web Server: GHTTPD 

Check that URL doesn’t contain “/..” 

 

ptr changes after it was checked  

but before it was used!   (Time-Of-Check-To-Time-Of-Use attack) 

 

 

Register containing pointer to URL 
is pushed onto stack… 

 

… overflown 

 

… and read from stack 

 
 

At this point, overflown ptr may point 
to a string containing “/..” 
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SSH Authentication Code 

Loop until one of  
the authentication 
methods succeeds 

 

detect_attack() prevents 
checksum attack on SSH1… 

 
…and also contains an 
overflow bug which permits 
the attacker to put any value 
into any memory location 

write 1 here 
 

 Break out of authentication 
loop without authenticating 
properly 
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Reducing Lifetime of Critical Data 

Reset flag here, right before 
doing the checks  



 

slide 49 

Overflowing buffers on heap can change pointers 
that point to important data 

• Illegitimate privilege elevation: if program with 
overflow has sysadm/root rights, attacker can use it to 
write into a normally inaccessible file 

– Example: replace a filename pointer with a pointer into a 
memory location containing the name of a system file (for 
example, instead of temporary file, write into AUTOEXEC.BAT) 

Sometimes can transfer execution to attack code 

• Example: December 2008 attack on XML parser in 
Internet Explorer 7  - see 
http://isc.sans.org/diary.html?storyid=5458 

 

Heap Overflow 



 

vtable 

Function Pointers on the Heap 

Compiler-generated function pointers  
(e.g., virtual method table in C++ or JavaScript code) 

 

 

 

 

 

Suppose vtable is on the heap next to a string object: 

ptr 

data 

Object  T FP1 

FP2 

FP3 

vtable 

method #1 

method #2 

method #3 

p
tr

 

buf[256] 

d
a
ta

 

object T 
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Heap-Based Control Hijacking 

Compiler-generated function pointers  
(e.g., virtual method table in C++ code) 

 

 

 

 

 

Suppose vtable is on the heap next to a string object: 

ptr 

data 

Object  T FP1 

FP2 

FP3 

vtable 

method #1 

method #2 

method #3 

p
tr

 

buf[256] 

d
a
ta

 

object T 

vtable 
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shell 
code 



 

Problem? 

 <SCRIPT language="text/javascript"> 

  shellcode = unescape("%u4343%u4343%..."); 

  overflow-string = unescape(“%u2332%u4276%...”); 

 

  cause-overflow( overflow-string );        // overflow  buf[ ] 

 </SCRIPT? 

p
tr

 

buf[256] 

d
a
ta

 

object T 

vtable 
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shell 
code 

Where will the browser place  

the shellcode on the heap??? 
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Force JavaScript JiT (“just-in-time” compiler) to 
fill heap with executable shellcode, then point 
SFP or vtable ptr anywhere in the spray area 

Heap Spraying 
h
e
a
p
 

NOP  slide shellcode 

execute enabled execute enabled 

execute enabled execute enabled 

execute enabled execute enabled 



 

 

  var  nop = unescape(“%u9090%u9090”) 

  while (nop.length < 0x100000)  nop += nop 

  var shellcode = unescape("%u4343%u4343%..."); 

  var x = new Array () 

  for (i=0;  i<1000;  i++) { 

   x[i] = nop + shellcode; 

  } 

 

Pointing a function pointer anywhere in the heap will 
cause shellcode to execute 

JavaScript Heap Spraying 
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Use a sequence of JavaScript allocations and free’s 
to make the heap look like this: 

 

 

 

 

 

 

Allocate vulnerable buffer in JavaScript and  
   cause overflow 
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Placing Vulnerable Buffer 
[Safari PCRE exploit, 2008] 

object O 

free blocks 

heap  



 

Memory allocation: malloc(size_t n) 

• Allocates n bytes and returns a pointer to the 
allocated memory; memory not cleared 

• Also calloc(), realloc() 

Memory deallocation: free(void * p) 

• Frees the memory space pointed to by p, which must 
have been returned by a previous call to malloc(), 
calloc(), or realloc() 

• If free(p) has already been called before, undefined 
behavior occurs 

• If p is NULL, no operation is performed 

Dynamic Memory Management in C 
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Memory Management Errors 

Initialization errors 

Failing to check return values  

Writing to already freed memory  

Freeing the same memory more than once  

Improperly paired memory management 
functions (example: malloc / delete) 

Failure to distinguish scalars and arrays  

Improper use of allocation functions 

All result in exploitable vulnerabilities 
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Doug Lea’s Memory Allocator 

The GNU C library and most versions of Linux 
are based on Doug Lea’s malloc (dlmalloc) as 
the default native version of malloc  

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

P

Size or last 4 bytes of prev.

Size

User data

Last 4 bytes of user data

P

Allocated chunk Free chunk
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Free Chunks in dlmalloc 

Organized into circular double-linked lists (bins) 

Each chunk on a free list contains forward and 
back pointers to the next and previous chunks 
in the list 

• These pointers in a free chunk occupy the same eight 
bytes of memory as user data in an allocated chunk 

Chunk size is stored in the last four bytes of the 
free chunk 

• Enables adjacent free chunks to be consolidated to 
avoid fragmentation of memory 
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A List of Free Chunks in dlmalloc 

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

head 

element

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

:

:

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

head 

element
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Responding to Malloc 

Best-fit method 

• An area with m bytes is selected, where m is the 
smallest available chunk of contiguous memory equal 
to or larger than n (requested allocation) 

First-fit method 

• Returns the first chunk encountered containing n or 
more bytes 

Prevention of fragmentation  

• Memory manager may allocate chunks that are larger 
than the requested size if the space remaining is too 
small to be useful 
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The Unlink Macro 

 
#define unlink(P, BK, FD) {  

   FD = P->fd;  

   BK = P->bk;   

   FD->bk = BK;   

   BK->fd = FD;  

}  
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Removes a chunk from a free list  -when? 

Hmm… memory copy… 

Address of destination read  
                    from the free chunk 

The value to write there also read  
                    from the free chunk 

What if the allocator is confused 

and this chunk has actually  

been allocated… 

… and user data written into it? 



 

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

Unused space

Size

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

Size or last 4 bytes of prev.

Size

Forward pointer to next

Back pointer to prev.

:

1

<-P

:

:

<-BK (2)

<-FD (1)

(4) BK->fd = FD;

(1) FD = P->fd;  

(2) BK = P->bk;  

(3) FD->bk = BK;  

Before 

Unlink

Results 

of Unlink

(4)

(3)

Example of Unlink 
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What if this area 

contained user data? 



 

Freeing the same chunk of memory twice, 
without it being reallocated in between 

Start with a simple case: 
• The chunk to be freed is isolated in memory 

• The bin (double-linked list) into which the chunk will be 
placed is empty 

 

Double-Free Vulnerabilities 
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Forward pointer to first chunk in list 

Back pointer to last chunk in list 

Size of previous chunk, if unallocated

Size of chunk, in bytes

User data

: 

P->

bin->

P
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Empty Bin and Allocated Chunk 



 

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After First Call to free() 
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Forward pointer to first chunk in list 

Back pointer to last chunk in list 

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Second Call to free() 
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Forward pointer to first chunk in list 

Back pointer to last chunk in list 

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After malloc() Has Been Called 
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After malloc, user data 

will be written here 

This chunk is 

unlinked from  

free list… how? 

 



 

Forward pointer to first chunk in list 

Back pointer to last chunk in list 

Size of previous chunk, if unallocated

Size of chunk, in bytes

Forward pointer to next chunk in list 

Back pointer to previous chunk in list 

Unused space (may be 0 bytes long)

Size of chunk

P->

bin->

P

After Another malloc() 
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After another malloc,  

pointers will be read 

from here as if it were  

a free chunk  (why?) 

Same chunk will 

be returned… 

(why?) 

 

One will be interpreted as address, 

the other as value   (why?) 



 

First chunk free’d for the second time 

This malloc returns a pointer to the same 
chunk as was referenced by first 

The GOT address of the strcpy() function 
(minus 12) and the shellcode location are 
placed into this memory 

This malloc returns same chunk yet again (why?) 
unlink() macro copies the address of the shellcode 
into the address of the strcpy() function in the 
Global Offset Table - GOT (how?) 

When strcpy() is called, control is transferred 
to shellcode… needs to jump over the first 12 
bytes (overwritten by unlink) 

Sample Double-Free Exploit Code 
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 1. static char *GOT_LOCATION = (char *)0x0804c98c; 
 2. static char shellcode[] = 
 3.   "\xeb\x0cjump12chars_"   
 4.   "\x90\x90\x90\x90\x90\x90\x90\x90" 
 5. 
 6. int main(void){ 
 7.   int size = sizeof(shellcode); 
 8.   void *shellcode_location; 
 9.   void *first, *second, *third, *fourth; 
10.   void *fifth, *sixth, *seventh; 
11.   shellcode_location = (void *)malloc(size); 
12.   strcpy(shellcode_location, shellcode); 
13.   first = (void *)malloc(256); 
14.   second = (void *)malloc(256); 
15.   third = (void *)malloc(256); 
16.   fourth = (void *)malloc(256); 
17.   free(first); 
18.   free(third); 
19.   fifth = (void *)malloc(128); 
20.   free(first); 
21.   sixth = (void *)malloc(256); 
22.   *((void **)(sixth+0))=(void *)(GOT_LOCATION-12); 
23.   *((void **)(sixth+4))=(void *)shellcode_location; 
24.   seventh = (void *)malloc(256); 
25.   strcpy(fifth, "something"); 
26.   return 0; 
27. }  
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Use-After-Free in the Real World 

MICROSOFT WARNS OF NEW IE ZERO DAY, EXPLOIT IN THE WILD 

[ThreatPost, September 17, 2013] 

The attacks are targeting IE 8 and 9 and there’s no patch for the vulnerability right 
now… The vulnerability exists in the way that Internet Explorer accesses an object in 
memory that has been deleted or has not been properly allocated. The vulnerability 
may corrupt memory in a way that could allow an attacker to execute arbitrary code… 

The exploit was attacking a Use After Free vulnerability in IE’s HTML rendering 
engine (mshtml.dll) and was implemented entirely in Javascript (no dependencies on 
Java, Flash etc), but did depend on a Microsoft Office DLL which was not compiled 
with ASLR (Address Space Layout Randomization) enabled. 

The purpose of this DLL in the context of this exploit is to bypass ASLR by providing 
executable code at known addresses in memory, so that a hardcoded ROP (Return 
Oriented Programming) chain can be used to mark the pages containing shellcode (in 
the form of Javascript strings) as executable… 

The most likely attack scenarios for this vulnerability are the typical link in an email or 
drive-by download. 
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Two’s Complement 

Binary representation of negative integers 

Represent X (where X<0) as 2N-|X| 

N is word size (e.g., 32 bits on x86 architecture) 

0 0 0 0 … 0 1 

0 1 1 1 … 1 1 

1 1 1 1 … 1 1 

1 1 1 1 … 1 0 

1 0 0 0 … 0 0 

1 

231-1 

-1 

-2 

-231 

 231 ?? 
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Integer Overflow 

static int getpeername1(p, uap, compat) { 

// In FreeBSD kernel, retrieves address of peer to which a socket is connected 

    … 

    struct sockaddr *sa; 

     … 

    len = MIN(len, sa->sa_len); 

    … copyout(sa, (caddr_t)uap->asa, (u_int)len); 

    … 

} 

Checks that “len” is not too big 

Copies “len” bytes from  
kernel memory to user space 

Negative “len” will always pass this check… 

… interpreted as a huge 
unsigned integer here 

… will copy up to 4G of  
    kernel memory 
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ActionScript Exploit 

ActionScript 3 is a scripting language for Flash 

• Basically, JavaScript for Flash animations 

• For performance, Flash 9 and higher compiles scripts 
into bytecode for ActionScript Virtual Machine (AVM2) 

Flash plugins are installed on millions of 
browsers, thus a perfect target for attack 

• Different Flash binaries are used for Internet Explorer 
and Firefox, but this turns out not to matter 

Exploit published in April 2008 

• “Leveraging the ActionScript Virtual Machine” 

[Dowd] 



 

call   SWF_GetEncodedInteger ; Scene Count 

mov  edi, [ebp+arg_0] 

mov  [esi+4], eax 

mov  ecx, [ebx+8] 

sub   ecx, [ebx+4] 

cmp   eax, ecx 

jg      loc_30087BB4 

… 

push  eax 

call    mem_Calloc 

Processing SWF Scene Records (1) 

How much memory is neded to store scenes 

Code that allocates memory 
for scene records: 

Total size of the buffer 
Offset into the buffer 

Is there enough memory in the buffer? 
(signed comparison) 

What if scene count is negative? 

Tell mem_Calloc how many bytes to allocate 

Interprets its argument as unsigned integer 

Supplied as part of SWF file from  
       potentially malicious website 

mem_Calloc fails (why?) and  
returns NULL 

slide 75 



 

Processing SWF Scene Records (2) 

Scene records are copied as follows: 

• Start with pointer P returned by allocator 

• Loop through and copy scenes until count ≤ 0 

• Copy frame count into P + offset, where offset is 
determined by scene count 

– Frame count also comes from the SWF file 

– It is a “short” (16-bit) value, but written as a 32-bit DWORD 

Attacker gains the ability to write one short value 
into any location in memory (why?) 

• … subject to some restrictions (see paper) 

• But this is not enough to hijack control directly (why?) 
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ActionScript Virtual Machine (AVM2) 

Register-based VM 

• Bytecode instructions write and read from “registers” 

“Registers”, operand stack, scope stack allocated 
on the same runtime stack as used by Flash itself 

• “Registers” are mapped to locations on the stack and 
accessed by index (converted into memory offset) 

• This is potentially dangerous (why?) 

Malicious Flash script could hijack browser’s host 

• Malicious bytecode can write into any location on the 
stack by supplying a fake register index 

• This would be enough to take control (how?) 
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AVM2 Verifier 

ActionScript code is verified before execution 

All bytecodes must be valid 

• Throw an exception if encountering an invalid bytecode 

All register accesses correspond to valid locations 
on the stack to which registers are mapped 

For every instruction, calculate the number of 
operands, ensure that operands of correct type 
will be on the stack when it is executed 

All values are stored with correct type information 

• Encoded in bottom 3 bits 



 

Relevant Verifier Code 

… 

if(AS3_argmask[opCode] == 0xFF) { 

   … throw exception …  

} 

… 

opcode_getArgs(…) 

… 

 

void opcode_getArgs(…) { 

    DWORD mask=AS3_argmask[opCode]; 

    … 

    if(mask <=0) { … return … } 

    … *arg_dword1 = SWF_GetEncodedInteger(&ptr); 

    if(mask>1) *arg_dword2 = SWF_GetEncodedInteger(&ptr); 

}  

Invalid bytecode 

Determine operands 

Number of operands for each opcode  
is defined in AS3_argmask array 
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Executing Invalid Opcodes 

If interpreter encounters an invalid opcode, it 
silently skips it and continues executing 

• Doesn’t really matter because this can’t happen 

– Famous last words… 

• AS3 code is executed only after it has been verified, 
and verifier throws an exception on invalid bytecode 

But if we could somehow trick the verifier… 

• Bytes after the opcode are treated as data (operands) 
by the verifier, but as executable code by interpreter 

• This is an example of a TOCTTOU (time-of-check-to-
time-of-use) vulnerability 
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Breaking AVM2 Verifier 
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Breaking AVM2 Verifier 

Pick an invalid opcode 

Use the ability to write into arbitrary memory to 
change the AS3_argmask of that opcode from 
0xFF to something else 

AVM2 verifier will treat it as normal opcode and 
skip subsequent bytes as operands 

• How many? This is also determined by AS3_argmask! 

AVM2 interpreter, however, will skip the invalid 
opcode and execute those bytes 

Can now execute unverified ActionScript code 
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Further Complications 

Can execute only a few unverified bytecodes at a 
time (why?) 

• Use multiple “marker” opcodes with overwritten masks 

Cannot directly overwrite saved EIP on the 
evaluation stack with the address of shellcode 
because 3 bits are clobbered by type information 

• Stack contains a pointer to current bytecode (codePtr) 

• Move it from one “register” to another, overwrite EIP 

• Bytecode stream pointed to by codePtr contains a jump 
to the actual shellcode 

Read the paper for more details 
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Variable Arguments in C 

In C, can define a function with a variable 
number of arguments 

• Example: void printf(const char* format, …) 

Examples of usage: 

  
 

Format specification encoded by 
special % characters 
 

• %d,%i,%o,%u,%x,%X – integer argument 
• %s – string argument 
• %p – pointer argument (void *) 
• Several others 



 

Implementation of Variable Args 

Special functions va_start, va_arg, va_end 
compute arguments at run-time 
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printf has an internal 
stack pointer 
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Frame with Variable Args 

 

va_start computes 
location on the stack 
past last statically 
known argument 

 

 
 

 

va_arg(ap,type)  
retrieves next arg  
from offset ap 
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Proper use of printf format string: 
  … int foo=1234;  
      printf(“foo = %d in decimal, %X in hex”,foo,foo); … 

– This will print  

  foo = 1234 in decimal, 4D2 in hex 

Sloppy use of printf format string: 
  … char buf[13]=“Hello, world!”;  
      printf(buf); 

         // should’ve used printf(“%s”, buf); … 
 

– If the buffer contains a format symbol starting with %, location 
   pointed to by printf’s internal stack pointer will be interpreted 
   as an argument of printf.  This can be exploited to move 
   printf’s internal stack pointer!   (how?) 

Format Strings in C 
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%n format symbol tells printf to write the number 
of characters that have been printed 

  … printf(“Overflow this!%n”,&myVar); … 

– Argument of printf is interpeted as destination address 

– This writes 14 into myVar (“Overflow this!” has 14 characters) 

What if printf does not have an argument? 
  … char buf[16]=“Overflow this!%n”;  
      printf(buf); … 

 

– Stack location pointed to by printf’s internal stack pointer will 
be interpreted as address into which the number of characters 
will be written! 

Writing Stack with Format Strings 
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Using %n to Mung Return Address 

 

 

RET “… attackString%n”, attack code &RET 

Overwrite location under printf’s stack 

pointer with RET address; 

printf(buffer) will write the number of  

characters in attackString into RET 

 

 

Return 
execution to 
this address 

 

Buffer with attacker-supplied  

input string 

Number of characters in 

attackString must be  

equal to … what? 

See “Exploiting Format String Vulnerabilities” for details 

 

C has a concise way of printing multiple symbols: %Mx will print exactly 4M bytes (taking them 
from the stack).  Attack string should contain enough “%Mx” so that the number of characters 
printed is equal to the most significant byte of the address of the attack code. 

Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, thus 
replacing RET with the address of attack code byte by byte. 

This portion contains 

enough % symbols 

to advance printf’s 

internal stack pointer 


