CS 361S

Side-Channel Attacks: Acoustics and Reflections

Vitaly Shmatikov

Reading

- "Keyboard Acoustic Emanations Revisited" by Zhuang, Zhou, and Tygar (CCS 2005)
- Compromising Reflections: How to read Computer Monitors around a Corner" by Backes, Duermuth, and Unruh (S&P 2008)
 - Also "Tempest in a Teapot: Compromising Reflections Revisited" (S&P 2009)

Acoustic Information in Typing

- Different keystrokes make slightly different sounds
 - Different locations on the supporting plate

- Frequency information in the sound of typed key can be used to learn which key it is
 - Observed by Asonov and Agrawal (2004)

"Key" Observation

- Exploit the fact that typed text is non-random (for example, English)
 - Some letters occur more often than others
 - Limited number of valid letter sequences (spelling)
 - Limited number of valid word sequences (grammar)
- Build acoustic model for keyboard and typist

Sound of a Keystroke

[Zhuang, Zhou, Tygar]

Each keystroke is represented as a vector of Cepstrum features

- Fourier transform of the decibel spectrum
- Standard technique from speech processing

Bi-Grams of Characters

[Zhuang, Zhou, Tygar]

- Group keystrokes into N clusters
- Find the best mapping from cluster labels to characters
- Exploit the fact that some character combinations are more common than others
 - Example: "th" vs. "tj"
 - Unsupervised learning using Hidden Markov Models

Tri-grams of Words

[Zhuang, Zhou, Tygar]

Spelling correction

Simple statistical model of English grammar Use HMMs again to model

Two Copies of Recovered Text

[Zhuang, Zhou, Tygar]

Before spelling and grammar correction the big money fight has drawn the <u>shoporo</u> <u>od dosens</u> of companies in the entertainment industry as well as attorneys <u>gnnerals</u> on states, who fear the <u>fild shading softwate</u> will encourage illegal <u>acyivitt</u>, <u>srem</u> the <u>grosth</u> of small <u>arrists</u> and lead to lost <u>cobs</u> and dimished sales <u>tas</u> revenue.

After spelling and grammar correction the big money fight has drawn the support of dozens of companies in the entertainment industry as well as attorneys generals in states, who fear the <u>film</u> sharing software will encourage illegal activity, stem the growth of small artists and lead to lost jobs and <u>finished</u> sales tax revenue.

= errors in recovery

= errors corrected by grammar

Feedback-based Training

[Zhuang, Zhou, Tygar]

- Language correction of recovered characters
- Feedback for more rounds of training
- Output: keystroke classifier
 - Language-independent
 - Can be used to recognize <u>random</u> sequence of keys
 - For example, passwords
 - Many possible representations
 - Neural networks, linear classification, Gaussian mixtures

Experiment: Single Keyboard

[Zhuang, Zhou, Tygar]

- Logitech Elite Duo wireless keyboard
- 4 data sets recorded in two settings: quiet and noisy

- Consecutive keystrokes are clearly separable
- Automatically extract keystroke positions in the signal with some manual error correction

Results for Single Keyboard

[Zhuang, Zhou, Tygar]

Datasets

	Recording length	Number of words	Number of keys	
Set 1	~12 min	~400	~2500	
Set 2	~27 min	~1000	~5500	
Set 3	~22 min	~800	~4200	
Set 4	~24 min	~700	~4300	

Initial and final recognition rate

	Set 1 (%)		Set 2 (%)		Set 3 (%)		Set 4 (%)	
	Word	Char	Word	Char	Word	Char	Word	Char
Initial	35	76	39	80	32	73	23	68
Final	90	96	89	96	83	95	80	92

Experiment: Multiple Keyboards

Keyboard 1: Dell QuietKey PS/2

• In use for about 6 months

Keyboard 2: Dell QuietKey PS/2

• In use for more than 5 years

[Zhuang, Zhou, Tygar]

- Keyboard 3: Dell Wireless Keyboard
 - New

Results for Multiple Keyboards

[Zhuang, Zhou, Tygar]

◆12-minute recording with app. 2300 characters

	Keyboard 1 (%)		Keyboard 2 (%)		Keyboard 3 (%)	
	Word	Char	Word	Char	Word	Char
Initial	31	72	20	62	23	64
Final	82	93	82	94	75	90

Compromising Reflections

 Typical office: monitor faces away from window

- Screen is reflected in surrounding objects
 - Teapots, eyeglasses, bottles, etc.
- Use a commodity telescope to capture reflection from a distance (up to 30 meters)
- Image-processing techniques (deconvolution) to improve the quality of captured reflections

Experimental Setup

Teapots

[Backes et al.]

From 5 meters

From 10 meters

Eyeglasses

Spoon

Plastic Bottle

With Better Equipment ...

- Celestron C9.25
 Schmidt-Cassegrain telescope
 - Street price: \$2000
- SBIG ST-10XME camera
 - Street price: \$6000

- Image deconvolution techniques to reduce blur
 - Out-of-focus blur
 - Large focal lengths & apertures = very shallow depth of field
 - Motion blur
 - Diffraction blur

... Human Eyes Are Readable

