
slide 1

0x1A Great Papers in

Computer Security

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

Course Logistics

Lectures: Tuesday and Thursday, 2-3:15pm

Instructor: Vitaly Shmatikov
• Office: CSA 1.114

• Office hours: Tuesday, 3:30-4:30pm (after class)

• Open door policy – don’t hesitate to stop by!

TA: Martin Georgiev
• Office hours: Wednesday 1:30-3pm, PAI 5.33

No textbook; we will read a fair number of
research papers

Watch the course website for lecture notes,
assignments, and reference materials

slide 3

Grading

Homeworks: 40% (4 homeworks, 10% each)

• Homework problems will be based on research papers

Midterm: 15%

Project: 45%

• Computer security is a contact sport – the best way to
understand it is to get your hands dirty

• Projects can be done individually or in small teams

• Project proposal due September 20

• You can find a list of potential project ideas on the
course website, but don’t hesitate to propose your own

slide 4

Prerequisites

Basic understanding of operating systems and
memory management

• At the level of an undergraduate OS course

Some familiarity with cryptography is helpful

• Cryptographic hash functions, public-key and
symmetric cryptosystems

Undergraduate course in complexity and/or
theory of computation

Ask if you are not sure whether you are qualified
to take this course

slide 5

What This Course is Not About

Not a comprehensive course on computer security

Not a course on cryptography

• We will cover some crypto when talking about
cryptographic protocols and privacy

Not a seminar course

• We will read and understand state-of-the-art research
papers, but you’ll also have to do some actual work 

Focus on several specific research areas

• Mixture of theory and systems (very unusual!)

You have a lot of leeway in picking your project

slide 6

“Best Hits” Course

26 selected papers

• Somewhat arbitrary – a reflection of personal taste

• Complete list on the website

• Will also discuss follow-up and related work

Goal: give you a taste of what research in
computer security is like

Wide variety of topics

• Memory attacks and defenses, secure information
flow, understanding Internet-wide worms and viruses,
designing and breaking cryptographic protocols,
anonymity and privacy, side-channel attacks…

slide 7

Start Thinking About a Project

A few ideas are on the course website

Many ways to go about it

• Build a tool that improves software security

– Analysis, verification, attack detection, attack containment

• Apply an existing tool to a real-world system

• Demonstrate feasibility of some attack

• Do a substantial theoretical study

• Invent something of your own

Start forming teams and thinking about potential
topics early on!

slide 8

A Few Project Ideas

Security of cloud computing (Amazon EC2, etc.)

Errors in security logic of Web applications

Unintended leakages and covert channels

Anonymous communication schemes

Privacy issues in networked consumer devices

Security of Android APIs

Wireless routing, authentication, localization

Security for voice-over-IP

Choose something that interests you!

slide 9

C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole

 Buffer Overflows: Attacks and Defenses for

the Vulnerability of the Decade

(DISCEX 1999)

slide 10

Famous Internet Worms

Morris worm (1988): overflow in fingerd

• 6,000 machines infected (10% of existing Internet)

CodeRed (2001): overflow in MS-IIS server

• 300,000 machines infected in 14 hours

SQL Slammer (2003): overflow in MS-SQL server

• 75,000 machines infected in 10 minutes (!!)

Sasser (2004): overflow in Windows LSASS

• Around 500,000 machines infected
Responsible for user

authentication in Windows

slide 11

… And The Band Marches On

Conficker (2008-09): overflow in Windows RPC

• Around 10 million machines infected (estimates vary)

Stuxnet (2009-10): several zero-day overflows +
same Windows RPC overflow as Conficker

• Windows print spooler service

– Also exploited by Flame (announced in 2012)

• Windows LNK shortcut display

• Windows task scheduler

slide 12

Why Are We Insecure?

126 CERT security advisories (2000-2004)

Of these, 87 are memory corruption vulnerabilities

73 are in applications providing remote services

• 13 in HTTP servers, 7 in database services, 6 in remote
login services, 4 in mail services, 3 in FTP services

Most exploits involve illegitimate control transfers

• Jumps to injected attack code, return-to-libc, etc.

• Therefore, most defenses focus on control-flow security

But exploits can also target configurations, user
data and decision-making values

[Chen et al. 2005]

slide 13

Buffer is a data storage area inside computer
memory (stack or heap)

• Intended to hold pre-defined amount of data

• If executable code is supplied as “data”, victim’s
machine may be fooled into executing it

– Code will self-propagate or give attacker control over machine

Attack can exploit any memory operation

• Pointer assignment, format strings, memory allocation
and de-allocation, function pointers, calls to library
routines via offset tables

• Attacks need not involve injected code!

Memory Exploits

slide 14

Stack Buffers

Suppose Web server contains this function
 void func(char *str) {

 char buf[126];

 strcpy(buf,str);

 }

When this function is invoked, a new frame
(activation record) is pushed onto the stack

Allocate local buffer

(126 bytes reserved on stack)

Copy argument into local buffer

Top of

stack

Stack grows this way

buf sfp
ret

addr str

Local variables

Frame of the

calling function

Execute code
at this address
after func() finishes

Arguments Pointer to
previous
frame

slide 15

What If Buffer Is Overstuffed?

Memory pointed to by str is copied onto stack…
 void func(char *str) {

 char buf[126];

 strcpy(buf,str);

 }

If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

strcpy does NOT check whether the string

at *str contains fewer than 126 characters

buf str

This will be interpreted
as return address!

overflow
Top of

stack
Frame of the

calling function

slide 16

Executing Attack Code

Suppose buffer contains attacker-created string

• For example, str points to a string received from the
network as the URL

When function exits, code in the buffer will be

 executed, giving attacker a shell

• Root shell if the victim program is setuid root

code str Frame of the
calling function

ret

Attacker puts actual assembly

instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

In the overflow, a pointer back into the buffer

appears in the location where the program

expects to find return address

Top of

stack

slide 17

Executable attack code is stored on stack, inside
the buffer containing attacker’s string

• Stack memory is supposed to contain only data, but…

For the basic stack-smashing attack, overflow
portion of the buffer must contain correct address
of attack code in the RET position

• The value in the RET position must point to the
beginning of attack assembly code in the buffer

– Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position
his buffer will be when the function is called

Basic Stack Code Injection

int foo (void (*funcp)()) {
 char* ptr = point_to_an_array;
 char buf[128];
 gets (buf);
 strncpy(ptr, buf, 8);
 (*funcp)();
}

String
grows

Stack
grows

int bar (int val1) {
 int val2;
 foo (a_function_pointer);
}

Attacker-
controlled
memory

Most popular
target

val1

val2

arguments (funcp)

return address

Saved Frame Pointer

pointer var (ptr)

buffer (buf)

Stack Corruption: General View

slide 18

args (funcp)

return address

PFP

pointer var (ptr)

buffer (buf)

Attack code

① Change the return address to point
to the attack code. After the
function returns, control is
transferred to the attack code.

② … or return-to-libc: use existing
instructions in the code segment
such as system(), exec(), etc. as
the attack code.

①

② set stack pointers to
return to a dangerous
library function

“/bin/sh”

system()

Attack #1: Return Address

slide 19

slide 20

Cause: No Range Checking

strcpy does not check input size

• strcpy(buf, str) simply copies memory contents into
buf starting from *str until “\0” is encountered,
ignoring the size of area allocated to buf

Many C library functions are unsafe

• strcpy(char *dest, const char *src)

• strcat(char *dest, const char *src)

• gets(char *s)

• scanf(const char *format, …)

• printf(const char *format, …)

slide 21

strncpy(char *dest, const char *src, size_t n)

• If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

• Programmer has to supply the right value of n

Potential overflow in htpasswd.c (Apache 1.3)
 … strcpy(record,user);
 strcat(record,”:”);

 strcat(record,cpw); …

Published “fix” (do you see the problem?)
 … strncpy(record,user,MAX_STRING_LEN-1);
 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),

then appends “:” and hashed password (“cpw”)

slide 22

Published “fix” for Apache htpasswd overflow:
 … strncpy(record,user,MAX_STRING_LEN-1);
 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1

characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1

characters into buffer

slide 23

C uses function pointers for callbacks: if pointer to
F is stored in memory location P, then another
function G can call F as (*P)(…)

Function Pointer Overflow

attack code

Buffer with attacker-supplied

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)

args (funcp)

return address

SFP

pointer var (ptr)

buffer (buf)

 Attack code

Syscall pointer

 Global Offset Table

①

②

Attack #2: Pointer Variables

slide 24

① Change a function pointer to point to
attack code

② Any memory, on or off the stack, can be
modified by a statement that stores a
value into the compromised pointer

strcpy(buf, str);

 *ptr = buf[0];

slide 25

Home-brewed range-checking string copy
 void notSoSafeCopy(char *input) {
 char buffer[512]; int i;

 for (i=0; i<=512; i++)

 buffer[i] = input[i];

 }

 void main(int argc, char *argv[]) {

 if (argc==2)

 notSoSafeCopy(argv[1]);

 }

Off-By-One Overflow

1-byte overflow: can’t change RET, but can
change saved pointer to previous stack frame

• On little-endian architecture, make it point into buffer

• Caller’s RET will be read from buffer!

 This will copy 513
characters into the
buffer. Oops!

 args (funcp)

return address

SFP

pointer var (ptr)

buffer (buf)

Attack code

Fake return

address

Fake SFP

Attack #3: Frame Pointer

Change the caller’s saved frame
pointer to point to attacker-controlled
memory. Caller’s return address will be
read from this memory.

slide 26

Arranged like a

real frame

slide 27

Embed “canaries” (stack cookies) in stack frames
and verify their integrity prior to function return

• Any overflow of local variables will damage the canary

Choose random canary string on program start

• Attacker can’t guess what the value of canary will be

Terminator canary: “\0”, newline, linefeed, EOF

• String functions like strcpy won’t copy beyond “\0”

Run-Time Checking: StackGuard

Top of

stack
buf sfp

ret
addr

Local variables

Pointer to
previous
frame

Frame of the
calling function

Return

execution to
this address

canary

StackGuard Implementation

StackGuard requires code recompilation

Checking canary integrity prior to every function
return causes a performance penalty

• For example, 8% for Apache Web server

StackGuard can be defeated

• A single memory copy where the attacker controls
both the source and the destination is sufficient

slide 28

Defeating StackGuard

Suppose program contains *dst=buf[0] where
attacker controls both dst and buf

• Example: dst is a local pointer variable

slide 29

buf sfp RET

Return execution to
this address

canary dst

sfp RET canary BadPointer, attack code

&RET

Overwrite destination of memory copy with RET position

slide 30

ProPolice / SSP

Rerrange stack layout (requires compiler mod)

args

return address

SFP

CANARY

arrays

local variables

Stack
growth

 No arrays or pointers

Ptrs, but no arrays

String
growth

Cannot overwrite any pointers

by overflowing an array

[IBM, used in gcc 3.4.1; also MS compilers]

exception handler records

slide 31

What Can Still Be Overwritten?

Other string buffers in the vulnerable function

Any data stored on the stack

• Exception handling records

• Pointers to virtual method tables

– C++: call to a member function passes as an argument “this”
pointer to an object on the stack

– Stack overflow can overwrite this object’s vtable pointer and
make it point into an attacker-controlled area

– When a virtual function is called (how?), control is transferred
to attack code (why?)

– Do canaries help in this case?

 (Hint: when is the integrity of the canary checked?)

slide 32

Litchfield’s Attack

Microsoft Windows 2003 server implements
several defenses against stack overflow

• Random canary (with /GS option in the .NET compiler)

• When canary is damaged, exception handler is called

• Address of exception handler stored on stack above RET

Attack: smash the canary and overwrite the
pointer to the exception handler with the address
of the attack code

• Attack code must be on heap and outside the module,
or else Windows won’t execute the fake “handler”

• Similar exploit used by CodeRed worm

Safe Exception Handling

Exception handler record must be on the stack of
the current thread

Must point outside the stack (why?)

Must point to a valid handler

• Microsoft’s /SafeSEH linker option: header of the binary
lists all valid handlers

Exception handler records must form a linked list,
terminating in FinalExceptionHandler

• Windows Server 2008: SEH chain validation

• Address of FinalExceptionHandler is randomized (why?)

slide 33

When SafeSEH Is Incomplete

If DEP is disabled, handler is allowed to be on
any non-image page except stack

• Put attack code on the heap, overwrite exception
handler record on the stack to point to it

If any module is linked without /SafeSEH,
handler is allowed to be anywhere in this module

• Overwrite exception handler record on the stack to
point to a suitable place in the module

slide 34

[Sotirov and Dowd]

slide 35

PointGuard

Attack: overflow a function pointer so that it
points to attack code

Idea: encrypt all pointers while in memory

• Generate a random key when program is executed

• Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory

– Pointers cannot be overflown while in registers

Attacker cannot predict the target program’s key

• Even if pointer is overwritten, after XORing with key it
will dereference to a “random” memory address

slide 36

CPU

 Memory

Pointer
0x1234

Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

0x1234 0x1340

CPU

 Memory
 Corrupted pointer

0x1234
0x1340

Data

1. Fetch pointer value

 2. Access attack code referenced
 by corrupted pointer

 Attack
code

[Cowan]

slide 37

CPU

 Memory

Encrypted pointer
0x7239

Data

1. Fetch pointer
 value

0x1234

2. Access data referenced by pointer

PointGuard Dereference

0x1234

Decrypt

0x1234 0x1340

CPU

 Memory
 Corrupted pointer

0x7239
0x1340

Data

 2. Access random address;
 segmentation fault and crash

Attack
code

1. Fetch pointer
 value

0x9786

Decrypt

Decrypts to
random value

0x9786

[Cowan]

slide 38

PointGuard Issues

Must be very fast

• Pointer dereferences are very common

Compiler issues

• Must encrypt and decrypt only pointers

• If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

Attacker should not be able to modify the key

• Store key in its own non-writable memory page

PG’d code doesn’t mix well with normal code

• What if PG’d code needs to pass a pointer to OS kernel?

slide 39

S. Chen et al.

 Non-Control-Data Attacks Are Realistic Threats

(USENIX Security 2005)

slide 40

Configuration parameters

• Example: directory names that confine remotely
invoked programs to a portion of the file system

Pointers to names of system programs

• Example: replace the name of a harmless script with
an interactive shell

• This is not the same as return-to-libc (why?)

Branch conditions in input validation code

Non-Control Targets
[Chen et al.]

slide 41

Example: Web Server Security

CGI scripts are executables on Web server that
can be executed by remote user via a special URL

• http://www.server.com/cgi-bin/SomeProgram

Don’t want remote users executing arbitrary
programs with the Web server’s privileges

• Need to restrict which programs can be executed

CGI-BIN is the directory name which is always
prepended to the name of the CGI script

• If CGI-BIN is “/usr/local/httpd/cgi-bin”, the above URL
will execute /usr/local/httpd/cgi-bin/SomeProgram

slide 42

Exploiting Null HTTP Heap Overflow

Null HTTPD had a heap overflow vulnerability

• When the corrupted buffer is freed, an overflown value
is copied to a location whose address is read from an
overflown memory area

• This enables attacker to copy an arbitrary value into a
memory location of his choice

Standard exploit: copy address of attack code into
the table containing addresses of library functions

• Transfers control to attacker’s code next time the library
function is called

Alternative: overwrite the value of CGI-BIN

slide 43

Null HTTP CGI-BIN Exploit

slide 44

Another Web Server: GHTTPD

Check that URL doesn’t contain “/..”

ptr changes after it was checked

but before it was used! (time-of-check-to-time-of-use attack)

Register containing pointer to URL
is pushed onto stack…

… overflown

… and read from stack

At this point, overflown ptr may point
to a string containing “/..”

slide 45

SSH Authentication Code

Loop until one of
the authentication
methods succeeds

detect_attack() prevents
checksum attack on SSH1…

…and also contains an
overflow bug which permits
the attacker to put any value
into any memory location

write 1 here

 Break out of authentication
loop without authenticating
properly

slide 46

Reducing Lifetime of Critical Data

Reset flag here, right before
doing the checks

slide 47

Two’s Complement

Binary representation of negative integers

Represent X (where X<0) as 2N-|X|

• N is word size (e.g., 32 bits on x86 architecture)

0 0 0 0 … 0 1

0 1 1 1 … 1 1

1 1 1 1 … 1 1

1 1 1 1 … 1 0

1 0 0 0 … 0 0

1

231-1

-1

-2

-231

 231 ??

slide 48

Integer Overflow

static int getpeername1(p, uap, compat) {

// In FreeBSD kernel, retrieves address of peer to which a socket is connected

 …

 struct sockaddr *sa;

 …

 len = MIN(len, sa->sa_len);

 … copyout(sa, (caddr_t)uap->asa, (u_int)len);

 …

}

Checks that “len” is not too big

Copies “len” bytes from
kernel memory to user space

Negative “len” will always pass this check…

… interpreted as a huge
unsigned integer here

… will copy up to 4G of
 kernel memory

slide 49

M. Dowd

 Application-Specific Attacks:

Leveraging the ActionScript Virtual Machine

(IBM X-Force report 2008)

slide 50

ActionScript Exploit

ActionScript 3 is a scripting language for Flash

• Basically, JavaScript for Flash animations

• For performance, Flash 9 and higher compiles scripts
into bytecode for ActionScript Virtual Machine (AVM2)

Flash plugins are installed on millions of
browsers, thus a perfect target for attack

• Different Flash binaries are used for Internet Explorer
and Firefox, but this turns out not to matter

[Dowd]

call SWF_GetEncodedInteger ; Scene Count

mov edi, [ebp+arg_0]

mov [esi+4], eax

mov ecx, [ebx+8]

sub ecx, [ebx+4]

cmp eax, ecx

jg loc_30087BB4

…

push eax

call mem_Calloc

Processing SWF Scene Records (1)

How much memory is needed to store scenes

Code that allocates memory
for scene records:

Total size of the buffer
Offset into the buffer

Is there enough memory in the buffer?
(signed comparison)

What if scene count is negative?

Tell mem_Calloc how many bytes to allocate

Interprets its argument as unsigned integer

Supplied as part of SWF file from
 potentially malicious website

mem_Calloc fails (why?) and
returns NULL

slide 51

Processing SWF Scene Records (2)

Scene records are copied as follows:

• Start with pointer P returned by allocator

• Loop through and copy scenes until count ≤ 0

• Copy frame count into P + offset, where offset is
determined by scene count

– Frame count also comes from the SWF file

– It is a “short” (16-bit) value, but written as a 32-bit DWORD

Attacker gains the ability to write one value into
any location in memory (why?)

• … subject to some restrictions (see paper)

• But this is not enough to hijack control directly (why?)

slide 52

slide 53

ActionScript Virtual Machine (AVM2)

Register-based VM

• Bytecode instructions write and read from “registers”

“Registers”, operand stack, scope stack allocated
on the same runtime stack as used by Flash itself

• “Registers” are mapped to locations on the stack and
accessed by index (converted into memory offset)

• This is potentially dangerous (why?)

Malicious Flash script could hijack browser’s host

• Malicious bytecode can write into any location on the
stack by supplying a fake register index

• This would be enough to take control (how?)

slide 54

AVM2 Verifier

ActionScript code is verified before execution

All bytecodes must be valid

• Throw an exception if encountering an invalid bytecode

All register accesses correspond to valid locations
on the stack to which registers are mapped

For every instruction, calculate the number of
operands, ensure that operands of correct type
will be on the stack when it is executed

All values are stored with correct type information

• Encoded in bottom 3 bits

Relevant Verifier Code

…

if(AS3_argmask[opCode] == 0xFF) {

 … throw exception …

}

…

opcode_getArgs(…)

…

void opcode_getArgs(…) {

 DWORD mask=AS3_argmask[opCode];

 …

 if(mask <=0) { … return … }

 … *arg_dword1 = SWF_GetEncodedInteger(&ptr);

 if(mask>1) *arg_dword2 = SWF_GetEncodedInteger(&ptr);

}

Invalid bytecode

Determine operands

Number of operands for each opcode
is defined in AS3_argmask array

slide 55

slide 56

Executing Invalid Opcodes

If interpreter encounters an invalid opcode, it
silently skips it and continues executing

• Doesn’t really matter because this can’t happen

– Famous last words…

• AS3 code is executed only after it has been verified,
and verifier throws an exception on invalid bytecode

But if we could somehow trick the verifier…

• Bytes after the opcode are treated as data (operands)
by the verifier, but as executable code by interpreter

• This is an example of a TOCTTOU (time-of-check-to-
time-of-use) vulnerability

slide 57

Breaking AVM2 Verifier

slide 58

Breaking AVM2 Verifier

Pick an invalid opcode

Use the ability to write into arbitrary memory to
change the AS3_argmask of that opcode from
0xFF to something else

AVM2 verifier will treat it as normal opcode and
skip subsequent bytes as operands

• How many? This is also determined by AS3_argmask!

AVM2 interpreter, however, will skip the invalid
opcode and execute those bytes

You can now execute unverified ActionScript code

slide 59

Further Complications

Can execute only a few unverified bytecodes at a
time (why?)

• Use multiple “marker” opcodes with overwritten masks

Cannot directly overwrite saved EIP on the
evaluation stack with the address of shellcode
because 3 bits are clobbered by type information

• Stack contains a pointer to current bytecode (codePtr)

• Move it from one “register” to another, overwrite EIP

• Bytecode stream pointed to by codePtr contains a jump
to the actual shellcode

Read the paper for more details

