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Course Logistics 

Lectures: Tuesday and Thursday, 2-3:15pm 

Instructor: Vitaly Shmatikov 
• Office: CSA 1.114 

• Office hours: Tuesday, 3:30-4:30pm (after class) 

• Open door policy – don’t hesitate to stop by! 

TA: Martin Georgiev 
• Office hours: Wednesday 1:30-3pm, PAI 5.33 

No textbook; we will read a fair number of 
research papers 

Watch the course website for lecture notes, 
assignments, and reference materials 
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Grading 

Homeworks: 40% (4 homeworks, 10% each) 

• Homework problems will be based on research papers 

Midterm: 15% 

Project: 45% 

• Computer security is a contact sport – the best way to 
understand it is to get your hands dirty 

• Projects can be done individually or in small teams 

• Project proposal due September 20 

• You can find a list of potential project ideas on the 
course website, but don’t hesitate to propose your own 
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Prerequisites 

Basic understanding of operating systems and 
memory management 

• At the level of an undergraduate OS course 

Some familiarity with cryptography is helpful 

• Cryptographic hash functions, public-key and 
symmetric cryptosystems 

Undergraduate course in complexity and/or 
theory of computation 

Ask if you are not sure whether you are qualified 
to take this course 
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What This Course is Not About 

Not a comprehensive course on computer security 

Not a course on cryptography 

• We will cover some crypto when talking about 
cryptographic protocols and privacy 

Not a seminar course 

• We will read and understand state-of-the-art research 
papers, but you’ll also have to do some actual work  

Focus on several specific research areas 

• Mixture of theory and systems (very unusual!) 

You have a lot of leeway in picking your project 



 

slide 6 

“Best Hits” Course 

26 selected papers 

• Somewhat arbitrary – a reflection of personal taste 

• Complete list on the website 

• Will also discuss follow-up and related work 

Goal: give you a taste of what research in 
computer security is like 

Wide variety of topics 

• Memory attacks and defenses, secure information 
flow, understanding Internet-wide worms and viruses, 
designing and breaking cryptographic protocols, 
anonymity and privacy, side-channel attacks… 
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Start Thinking About a Project 

A few ideas are on the course website 

Many ways to go about it 

• Build a tool that improves software security 

– Analysis, verification, attack detection, attack containment 

• Apply an existing tool to a real-world system 

• Demonstrate feasibility of some attack 

• Do a substantial theoretical study 

• Invent something of your own 

Start forming teams and thinking about potential 
topics early on! 
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A Few Project Ideas 

Security of cloud computing (Amazon EC2, etc.) 

Errors in security logic of Web applications 

Unintended leakages and covert channels 

Anonymous communication schemes 

Privacy issues in networked consumer devices 

Security of Android APIs 

Wireless routing, authentication, localization 

Security for voice-over-IP 

Choose something that interests you! 
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C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole 

 

 Buffer Overflows: Attacks and Defenses for  

the Vulnerability of the Decade 
 

(DISCEX 1999) 
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Famous Internet Worms 

Morris worm (1988): overflow in fingerd 

• 6,000 machines infected (10% of existing Internet) 

CodeRed (2001): overflow in MS-IIS server 

• 300,000 machines infected in 14 hours 

SQL Slammer (2003): overflow in MS-SQL server 

• 75,000 machines infected in 10 minutes (!!) 

Sasser (2004): overflow in Windows LSASS 

• Around 500,000 machines infected 
Responsible for user  

authentication in Windows 
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… And The Band Marches On 

Conficker (2008-09): overflow in Windows RPC 

• Around 10 million machines infected (estimates vary) 

Stuxnet (2009-10): several zero-day overflows + 
same Windows RPC overflow as Conficker  

• Windows print spooler service 

– Also exploited by Flame (announced in 2012) 

• Windows LNK shortcut display 

• Windows task scheduler 
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Why Are We Insecure?        

126 CERT security advisories (2000-2004) 

Of these, 87 are memory corruption vulnerabilities 

73 are in applications providing remote services 

• 13 in HTTP servers, 7 in database services, 6 in remote 
login services, 4 in mail services, 3 in FTP services 

Most exploits involve illegitimate control transfers 

• Jumps to injected attack code, return-to-libc, etc. 

• Therefore, most defenses focus on control-flow security 

But exploits can also target configurations, user 
data and decision-making values 

[Chen et al. 2005] 
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Buffer is a data storage area inside computer 
memory (stack or heap) 

• Intended to hold pre-defined amount of data 

• If executable code is supplied as “data”, victim’s 
machine may be fooled into executing it 

– Code will self-propagate or give attacker control over machine  

Attack can exploit any memory operation 

• Pointer assignment, format strings, memory allocation 
and de-allocation, function pointers, calls to library 
routines via offset tables 

• Attacks need not involve injected code! 

Memory Exploits 
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Stack Buffers 

Suppose Web server contains this function 
  void func(char *str) { 

           char buf[126]; 

           strcpy(buf,str); 

      } 

When this function is invoked, a new frame 
(activation record) is pushed onto the stack 

Allocate local buffer 

(126 bytes reserved on stack) 

Copy argument into local buffer 

 

 

Top of 

stack 

 
Stack grows this way 

buf sfp 
ret 

addr str 

 

Local variables 

 
Frame of the 

calling function 

 

Execute code  
at this address 
after func() finishes 

 

Arguments Pointer to 
previous 
frame 
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What If Buffer Is Overstuffed? 

Memory pointed to by str is copied onto stack… 
  void func(char *str) { 

           char buf[126]; 

           strcpy(buf,str); 

      } 

If a string longer than 126 bytes is copied into 
buffer, it will overwrite adjacent stack locations 

strcpy does NOT check whether the string  

at *str contains fewer than 126 characters 

 

 

buf str 

 

This will be interpreted 
as return address! 

overflow 
Top of 

stack 
Frame of the 

calling function 
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Executing Attack Code 

Suppose buffer contains attacker-created string 

• For example, str points to a string received from the 
network as the URL 

 

 

 

 

When function exits, code in the buffer will be  

    executed, giving attacker a shell 

• Root shell if the victim program is setuid root 

 

 

code str Frame of the 
calling function 

ret 

Attacker puts actual assembly  

instructions into his input string, e.g., 

binary code of execve(“/bin/sh”) 

In the overflow, a pointer back into the buffer  

appears in the location where the program 

expects to find return address 

 
Top of 

stack 
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Executable attack code is stored on stack, inside 
the buffer containing attacker’s string  

• Stack memory is supposed to contain only data, but… 

For the basic stack-smashing attack, overflow 
portion of the buffer must contain correct address 
of attack code in the RET position 

• The value in the RET position must point to the 
beginning of attack assembly code in the buffer 

– Otherwise application will crash with segmentation violation 

• Attacker must correctly guess in which stack position 
his buffer will be when the function is called 

Basic Stack Code Injection 



 

 
int foo (void (*funcp)()) { 
    char* ptr = point_to_an_array; 
    char buf[128]; 
    gets (buf); 
    strncpy(ptr, buf, 8); 
    (*funcp)(); 
} 

 

String 
grows 

 

Stack 
grows 

int bar (int val1) { 
    int  val2; 
    foo (a_function_pointer); 
} 

Attacker-
controlled 
memory 

Most popular 
target 

val1 

val2 

arguments       (funcp) 

return address 

Saved Frame Pointer 

pointer var       (ptr) 

buffer               (buf) 

Stack Corruption: General View 
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args                  (funcp) 

return address 

PFP 

pointer var       (ptr) 

buffer               (buf) 

Attack code 

① Change the return address to point 
to the attack code. After the 
function returns, control is 
transferred to the attack code. 

② … or return-to-libc: use existing 
instructions in the code segment 
such as system(), exec(), etc. as 
the attack code. 

① 

② set stack pointers to 
return to a dangerous 
library function 

“/bin/sh” 

system() 

 

 

 

Attack #1: Return Address 
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Cause: No Range Checking 

strcpy does not check input size 

• strcpy(buf, str) simply copies memory contents into 
buf starting from *str until “\0” is encountered, 
ignoring the size of area allocated to buf 

Many C library functions are unsafe 

• strcpy(char *dest, const char *src) 

• strcat(char *dest, const char *src) 

• gets(char *s) 

• scanf(const char *format, …) 

• printf(const char *format, …)  
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strncpy(char *dest, const char *src, size_t n) 

• If strncpy is used instead of strcpy, no more than n 
characters will be copied from *src to *dest 

• Programmer has to supply the right value of n 

Potential overflow in htpasswd.c (Apache 1.3) 
  … strcpy(record,user);  
      strcat(record,”:”); 

         strcat(record,cpw); … 

Published “fix” (do you see the problem?) 
   … strncpy(record,user,MAX_STRING_LEN-1); 
         strcat(record,”:”); 
         strncat(record,cpw,MAX_STRING_LEN-1); … 

Does Range Checking Help? 

 

Copies username (“user”) into buffer (“record”), 

then appends “:” and hashed password (“cpw”)  
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Published “fix” for Apache htpasswd overflow: 
   … strncpy(record,user,MAX_STRING_LEN-1); 
         strcat(record,”:”); 
         strncat(record,cpw,MAX_STRING_LEN-1); … 

Misuse of strncpy in htpasswd “Fix” 

 

 

 

 
MAX_STRING_LEN bytes allocated for record buffer 

contents of *user 

Put up to MAX_STRING_LEN-1 

characters into buffer 

: 

Put “:” 

contents of *cpw 

Again put up to MAX_STRING_LEN-1 

characters into buffer 
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C uses function pointers for callbacks: if pointer to 
F is stored in memory location P, then another 
function G can call F as (*P)(…) 

Function Pointer Overflow 

 

 

 

attack code 

Buffer with attacker-supplied  

input string 

 

Callback 

pointer 

 

Legitimate function F 

overflow 

 

(elsewhere in memory) 



 

args               (funcp) 

return address 

SFP 

pointer var       (ptr) 

buffer               (buf) 

 Attack code 

Syscall pointer 

  Global Offset Table 

①  

②  

Attack #2: Pointer Variables 
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① Change a function pointer to point to 
attack code 

② Any memory, on or off the stack, can be 
modified by a statement that stores a 
value into the compromised pointer 

 
strcpy(buf, str); 

      *ptr = buf[0]; 
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Home-brewed range-checking string copy 
   void notSoSafeCopy(char *input) { 
          char buffer[512]; int i;  
 
             for (i=0; i<=512; i++) 

                 buffer[i] = input[i];  

        } 

        void main(int argc, char *argv[]) { 

             if (argc==2)  

                notSoSafeCopy(argv[1]); 

        } 

Off-By-One Overflow 

 

1-byte overflow: can’t change RET, but can 
change saved pointer to previous stack frame 

• On little-endian architecture, make it point into buffer 

• Caller’s RET will be read from buffer! 

 This will copy 513 
characters into the 
buffer. Oops! 



 

 args                 (funcp) 

return address 

SFP 

pointer var       (ptr) 

buffer               (buf) 

Attack code 

 

Fake return 

address 

Fake SFP 

Attack #3: Frame Pointer 

Change the caller’s saved frame 
pointer to point to attacker-controlled  
memory. Caller’s return address will be  
read from this memory. 
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Arranged like a  

real frame 
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Embed “canaries” (stack cookies) in stack frames 
and verify their integrity prior to function return 

• Any overflow of local variables will damage the canary 

 

 

 

 

Choose random canary string on program start 

• Attacker can’t guess what the value of canary will be 

Terminator canary: “\0”, newline, linefeed, EOF 

• String functions like strcpy won’t copy beyond “\0” 

Run-Time Checking: StackGuard 

 

 

Top of 

stack 
buf sfp 

ret 
addr 

 

Local variables 

 

Pointer to 
previous 
frame 

Frame of the 
calling function 

 
Return 

execution to 
this address 

 
canary 



 

StackGuard Implementation 

StackGuard requires code recompilation 

Checking canary integrity prior to every function 
return causes a performance penalty 

• For example, 8% for Apache Web server 

StackGuard can be defeated 

• A single memory copy where the attacker controls 
both the source and the destination is sufficient 
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Defeating StackGuard 

Suppose program contains *dst=buf[0] where 
attacker controls both dst and buf 

• Example: dst is a local pointer variable 
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buf sfp RET 

 

Return execution to 
this address 

canary dst 

 

 

sfp RET canary BadPointer, attack code 
 

&RET 

Overwrite destination of memory copy with RET position 
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ProPolice / SSP 

Rerrange stack layout (requires compiler mod) 

args 

return address 

SFP 

CANARY 

arrays 

local variables 

 

Stack 
growth 

 No arrays or pointers 

Ptrs, but no arrays  

 
String 
growth 

Cannot overwrite any pointers 

by overflowing an array 

[IBM, used in gcc 3.4.1; also MS compilers] 

exception handler records 
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What Can Still Be Overwritten? 

Other string buffers in the vulnerable function 

Any data stored on the stack 

• Exception handling records 

• Pointers to virtual method tables 

– C++: call to a member function passes as an argument “this” 
pointer to an object on the stack 

– Stack overflow can overwrite this object’s vtable pointer and 
make it point into an attacker-controlled area 

– When a virtual function is called (how?), control is transferred 
to attack code (why?) 

– Do canaries help in this case?  

   (Hint: when is the integrity of the canary checked?) 
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Litchfield’s Attack 

Microsoft Windows 2003 server implements 
several defenses against stack overflow 

• Random canary (with /GS option in the .NET compiler) 

• When canary is damaged, exception handler is called 

• Address of exception handler stored on stack above RET 

Attack: smash the canary and overwrite the 
pointer to the exception handler with the address 
of the attack code 

• Attack code must be on heap and outside the module, 
or else Windows won’t execute the fake “handler” 

• Similar exploit used by CodeRed worm 



 

Safe Exception Handling 

Exception handler record must be on the stack of 
the current thread 

Must point outside the stack (why?)  

Must point to a valid handler 

• Microsoft’s /SafeSEH linker option: header of the binary 
lists all valid handlers 

Exception handler records must form a linked list, 
terminating in FinalExceptionHandler 

• Windows Server 2008: SEH chain validation 

• Address of FinalExceptionHandler is randomized (why?) 
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When SafeSEH Is Incomplete 

If DEP is disabled, handler is allowed to be on 
any non-image page except stack 

• Put attack code on the heap, overwrite exception 
handler record on the stack to point to it 

If any module is linked without /SafeSEH, 
handler is allowed to be anywhere in this module 

• Overwrite exception handler record on the stack to 
point to a suitable place in the module 
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[Sotirov and Dowd] 
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PointGuard 

Attack: overflow a function pointer so that it 
points to attack code 

Idea: encrypt all pointers while in memory 

• Generate a random key when program is executed 

• Each pointer is XORed with this key when loaded from 
memory to registers or stored back into memory 

– Pointers cannot be overflown while in registers 

Attacker cannot predict the target program’s key 

• Even if pointer is overwritten, after XORing with key it 
will dereference to a “random” memory address 
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CPU 

 Memory 
  
Pointer 
0x1234 

  
Data 

1. Fetch pointer value 

 

0x1234 

 
2. Access data referenced by pointer 

Normal Pointer Dereference 

0x1234 0x1340 

CPU 

 Memory 
  Corrupted pointer 

0x1234 
0x1340 

  
Data 

1. Fetch pointer value 

 

 2. Access attack code referenced 
 by corrupted pointer 

 Attack 
code 

  

[Cowan] 
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CPU 

 Memory 
  

Encrypted pointer 
0x7239 

  
Data 

1. Fetch pointer  
    value  

0x1234 

 
2. Access data referenced by pointer 

PointGuard Dereference  

0x1234 

Decrypt 

0x1234 0x1340 

CPU 

 Memory 
  Corrupted pointer 

0x7239 
0x1340 

  
Data 

 

 2. Access random address; 
    segmentation fault and crash 

Attack 
code 

  

1. Fetch pointer  
    value 

0x9786 

Decrypt 

Decrypts to 
random value 

0x9786 

[Cowan] 
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PointGuard Issues 

Must be very fast 

• Pointer dereferences are very common 

Compiler issues 

• Must encrypt and decrypt only pointers 

• If compiler “spills” registers, unencrypted pointer values 
end up in memory and can be overwritten there 

Attacker should not be able to modify the key 

• Store key in its own non-writable memory page 

PG’d code doesn’t mix well with normal code 

• What if PG’d code needs to pass a pointer to OS kernel? 
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S. Chen et al. 
 

 Non-Control-Data Attacks Are Realistic Threats 
 

(USENIX Security 2005) 
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Configuration parameters 

• Example: directory names that confine remotely 
invoked programs to a portion of the file system 

Pointers to names of system programs 

• Example: replace the name of a harmless script with 
an interactive shell 

• This is not the same as return-to-libc (why?) 

Branch conditions in input validation code 

 

Non-Control Targets 
[Chen et al.] 
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Example: Web Server Security 

CGI scripts are executables on Web server that 
can be executed by remote user via a special URL 

• http://www.server.com/cgi-bin/SomeProgram 

Don’t want remote users executing arbitrary 
programs with the Web server’s privileges 

• Need to restrict which programs can be executed 

CGI-BIN is the directory name which is always 
prepended to the name of the CGI script 

• If CGI-BIN is “/usr/local/httpd/cgi-bin”, the above URL 
will execute /usr/local/httpd/cgi-bin/SomeProgram 
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Exploiting Null HTTP Heap Overflow 

Null HTTPD had a heap overflow vulnerability 

• When the corrupted buffer is freed, an overflown value 
is copied to a location whose address is read from an 
overflown memory area 

• This enables attacker to copy an arbitrary value into a 
memory location of his choice 

Standard exploit: copy address of attack code into 
the table containing addresses of library functions 

• Transfers control to attacker’s code next time the library 
function is called 

Alternative: overwrite the value of CGI-BIN 
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Null HTTP CGI-BIN Exploit 
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Another Web Server: GHTTPD 

Check that URL doesn’t contain “/..” 

 

ptr changes after it was checked  

but before it was used!   (time-of-check-to-time-of-use attack) 

 

 

Register containing pointer to URL 
is pushed onto stack… 

 

… overflown 

 

… and read from stack 

 
 

At this point, overflown ptr may point 
to a string containing “/..” 
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SSH Authentication Code 

Loop until one of  
the authentication 
methods succeeds 

 

detect_attack() prevents 
checksum attack on SSH1… 

 
…and also contains an 
overflow bug which permits 
the attacker to put any value 
into any memory location 

write 1 here 
 

 Break out of authentication 
loop without authenticating 
properly 
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Reducing Lifetime of Critical Data 

Reset flag here, right before 
doing the checks  
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Two’s Complement 

Binary representation of negative integers 

Represent X (where X<0) as 2N-|X| 

• N is word size (e.g., 32 bits on x86 architecture) 

0 0 0 0 … 0 1 

0 1 1 1 … 1 1 

1 1 1 1 … 1 1 

1 1 1 1 … 1 0 

1 0 0 0 … 0 0 

1 

231-1 

-1 

-2 

-231 

 231 ?? 
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Integer Overflow 

static int getpeername1(p, uap, compat) { 

// In FreeBSD kernel, retrieves address of peer to which a socket is connected 

    … 

    struct sockaddr *sa; 

     … 

    len = MIN(len, sa->sa_len); 

    … copyout(sa, (caddr_t)uap->asa, (u_int)len); 

    … 

} 

Checks that “len” is not too big 

Copies “len” bytes from  
kernel memory to user space 

Negative “len” will always pass this check… 

… interpreted as a huge 
unsigned integer here 

… will copy up to 4G of  
    kernel memory 
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M. Dowd 
 

 Application-Specific Attacks:  

Leveraging the ActionScript Virtual Machine 
 

(IBM X-Force report 2008) 
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ActionScript Exploit 

ActionScript 3 is a scripting language for Flash 

• Basically, JavaScript for Flash animations 

• For performance, Flash 9 and higher compiles scripts 
into bytecode for ActionScript Virtual Machine (AVM2) 

Flash plugins are installed on millions of 
browsers, thus a perfect target for attack 

• Different Flash binaries are used for Internet Explorer 
and Firefox, but this turns out not to matter 

[Dowd] 



 

call   SWF_GetEncodedInteger ; Scene Count 

mov  edi, [ebp+arg_0] 

mov  [esi+4], eax 

mov  ecx, [ebx+8] 

sub   ecx, [ebx+4] 

cmp   eax, ecx 

jg      loc_30087BB4 

… 

push  eax 

call    mem_Calloc 

Processing SWF Scene Records (1) 

How much memory is needed to store scenes 

Code that allocates memory 
for scene records: 

Total size of the buffer 
Offset into the buffer 

Is there enough memory in the buffer? 
(signed comparison) 

What if scene count is negative? 

Tell mem_Calloc how many bytes to allocate 

Interprets its argument as unsigned integer 

Supplied as part of SWF file from  
       potentially malicious website 

mem_Calloc fails (why?) and  
returns NULL 
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Processing SWF Scene Records (2) 

Scene records are copied as follows: 

• Start with pointer P returned by allocator 

• Loop through and copy scenes until count ≤ 0 

• Copy frame count into P + offset, where offset is 
determined by scene count 

– Frame count also comes from the SWF file 

– It is a “short” (16-bit) value, but written as a 32-bit DWORD 

Attacker gains the ability to write one value into 
any location in memory (why?) 

• … subject to some restrictions (see paper) 

• But this is not enough to hijack control directly (why?) 
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ActionScript Virtual Machine (AVM2) 

Register-based VM 

• Bytecode instructions write and read from “registers” 

“Registers”, operand stack, scope stack allocated 
on the same runtime stack as used by Flash itself 

• “Registers” are mapped to locations on the stack and 
accessed by index (converted into memory offset) 

• This is potentially dangerous (why?) 

Malicious Flash script could hijack browser’s host 

• Malicious bytecode can write into any location on the 
stack by supplying a fake register index 

• This would be enough to take control (how?) 
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AVM2 Verifier 

ActionScript code is verified before execution 

All bytecodes must be valid 

• Throw an exception if encountering an invalid bytecode 

All register accesses correspond to valid locations 
on the stack to which registers are mapped 

For every instruction, calculate the number of 
operands, ensure that operands of correct type 
will be on the stack when it is executed 

All values are stored with correct type information 

• Encoded in bottom 3 bits 



 

Relevant Verifier Code 

… 

if(AS3_argmask[opCode] == 0xFF) { 

   … throw exception …  

} 

… 

opcode_getArgs(…) 

… 

 

void opcode_getArgs(…) { 

    DWORD mask=AS3_argmask[opCode]; 

    … 

    if(mask <=0) { … return … } 

    … *arg_dword1 = SWF_GetEncodedInteger(&ptr); 

    if(mask>1) *arg_dword2 = SWF_GetEncodedInteger(&ptr); 

}  

Invalid bytecode 

Determine operands 

Number of operands for each opcode  
is defined in AS3_argmask array 
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Executing Invalid Opcodes 

If interpreter encounters an invalid opcode, it 
silently skips it and continues executing 

• Doesn’t really matter because this can’t happen 

– Famous last words… 

• AS3 code is executed only after it has been verified, 
and verifier throws an exception on invalid bytecode 

But if we could somehow trick the verifier… 

• Bytes after the opcode are treated as data (operands) 
by the verifier, but as executable code by interpreter 

• This is an example of a TOCTTOU (time-of-check-to-
time-of-use) vulnerability 
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Breaking AVM2 Verifier 
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Breaking AVM2 Verifier 

Pick an invalid opcode 

Use the ability to write into arbitrary memory to 
change the AS3_argmask of that opcode from 
0xFF to something else 

AVM2 verifier will treat it as normal opcode and 
skip subsequent bytes as operands 

• How many? This is also determined by AS3_argmask! 

AVM2 interpreter, however, will skip the invalid 
opcode and execute those bytes 

You can now execute unverified ActionScript code 
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Further Complications 

Can execute only a few unverified bytecodes at a 
time (why?) 

• Use multiple “marker” opcodes with overwritten masks 

Cannot directly overwrite saved EIP on the 
evaluation stack with the address of shellcode 
because 3 bits are clobbered by type information 

• Stack contains a pointer to current bytecode (codePtr) 

• Move it from one “register” to another, overwrite EIP 

• Bytecode stream pointed to by codePtr contains a jump 
to the actual shellcode 

Read the paper for more details 


