CS 380S

Theory and Practice of
Secure Systems

Vitaly Shmatikov

http://www.cs.utexas.edu/~shmat/courses/cs380s/

Course Logistics

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

& Lectures: Tuesday and Thursday, 2-3:30pm

@ Instructor: Vitaly Shmatikov
e Office: TAYLOR 4.115C
e Office hours: Tuesday, 3:30-4:30pm (after class)
e Open door policy — don’t hesitate to stop by!

€ TA: Rolf Rolles
e Office hours: Wed, 1-2pm in ENS 31NQ, desk #4

& No textbook:; we will read a fair number of
research papers

¥ Watch the course website for lecture notes,
assignments, and reference materials

slide 2

Grading

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

¥ Homeworks: 40% (4 homeworks, 10% each)
e Homework problems will be based on research papers

& Midterm: 15%

& Project: 45%

e Computer security is a contact sport — the best way to
understand it is to get your hands dirty
e Projects can be done individually or in small teams

e Project proposal due in late September
— More detalils later

e | will provide a list of potential project ideas, but don't
hesitate to propose your own

slide 3

Prerequisite

W o P S o R T Y T L T e e o Y i S o o T T T T Y P i R T

€ Basic understanding of operating systems and
memory management

e At the level of an undergraduate OS course
€ Some familiarity with cryptography is helpful

e Cryptographic hash functions, public-key and
symmetric cryptosystems

€ Undergraduate course in complexity and/or
theory of computation

@ Ask me if you are not sure whether you are
gualified to take this course

slide 4

What This Course is Not About

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

¥ Not a comprehensive course on computer security

€ Not a course on cryptography

e We will cover some crypto when talking about provable
security

€®Not a seminar course

e We will read and understand state-of-the-art research
papers, but you’'ll also have to do some actual work ©

@®Focus on several specific research areas
e Mixture of theory and systems (very unusual!)

€ You have a lot of leeway in picking your project

slide 5

Correctness vs. Security

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@®Program or system correctness:
program satisfies specification

e For reasonable input, get reasonable output

@ Program or system security:
program properties preserved Iin face of attack

e For unreasonable input, output not completely disastrous

Main difference: adversary
e Active interference from a malicious agent

e |t is very difficult to come up with a model that captures
all possible adversarial actions

— Look at how adversary is modeled in “systems” and in “theory”
slide 6

The Meaning of the Lock

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

File Edit “iew History Bookmarks

O -c P

“¥7 Yahoo! reader [CityData 5] A0PA EE B

Tools

LT

P send Money, Money Transfer - ... | +
PayPal
m Personal Bus
Get Started Seand Money
ccount login ()

5

FPayPal password
| |

Goto

Log In

Faorgot your email address o
passwword?

Mewy to PayPal? Sign up.

Top questions

+ Why use PayPal when |
have credit cards?

+ ihat can | do with
PayPal?

Hi https :// W\ 75 | [y J3l =
= https:// = ﬁ

’ |P UP SUMMER

TH HOT DEALS. PayPai Shopping
— Yo O op brand
How about (S -
this lock? | -..| What does this lock mean?
Send money and buy online Sell enline

* Check out more guickly when you shop

arline.

» Sell on eBa

= Start accept
» Send or request maney from friends and wiehsite.
farnily.

= Discover all

https: ffweeewe pavpal.cormfogi-binfwebsorromd =_mpi-click-outsideguid =Acid=472180id =1662 Fabn=4 s XGMN-AwIQBg O

VZAQFVBFCOYXF4. ()

slide 7

Theme #1: Software Security

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ Vulnerabilities and attacks
e Memory corruption attacks
e Access control violations and concurrency attacks
e \Web security: browsers and Web applications
e Side-channel attacks (if time permits): timing, power

@ Detecting and containing malicious behavior
e |solation, reference monitors, intrusion detection

® Preventing attacks
e Memory protection
e Applications of static analysis to security
e Information flow control

slide 8

Theme #2: Privacy

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ Theoretical models
e Semantic security
e Secure multi-party computation
e Introduction to zero knowledge
e Key concept: provable security

@ Data privacy
e Query auditing and randomization
e Privacy-preserving data mining
e Differential privacy

slide 9

And Now
Our Feature Presentation

slide 10

Famous Internet Worms

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ Morris worm (1988): overflow in fingerd
e 6,000 machines infected (10% of existing Internet)

€ CodeRed (2001): overflow in MS-11S server
e 300,000 machines infected in 14 hours

€ SQL Slammer (2003): overflow in MS-SQL server
e 75,000 machines infected in 10 minutes (!!)

@ Sasser (2004): overflow in Windows LSASS___
 Around 500,000 machines infected uthontiontion i Windows

@ Conficker (2008-09): overflow in Windows Server
e Around 10 million machines infected (estimates vary)

slide 11

Why Are We Insecure?

O i S o o T e T T P P i o o o W R T Y P e o+ i e S L Y P i o [C h e n et al . 2 O O 5]

€126 CERT security advisories (2000-2004)
€ Of these, 87 are memory corruption vulnerabilities

€ 73 are in applications providing remote services

e 13 in HTTP servers, 7 in database services, 6 in remote
login services, 4 in mall services, 3 in FTP services

@ Most exploits involve illegitimate control transfers
e Jumps to injected attack code, return-to-libc, etc.
e Therefore, most defenses focus on control-flow security

€ But exploits can also target configurations, user
data and decision-making values

slide 12

Memory Exploits

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@®Buffer is a data storage area inside computer
memory (stack or heap)
e Intended to hold pre-defined amount of data

e |f executable code is supplied as “data”, victim’s
machine may be fooled into executing it
— Code will self-propagate or give attacker control over machine

@ Attack can exploit any memory operation

e Pointer assignment, format strings, memory allocation
and de-allocation, function pointers, calls to library
routines via offset tables

slide 13

Stack Buffers

T P S o - e S T P i o« L T e e T L P . i O R B

@ Suppose Web server contains this function

void func(char *str) { Allocate local buffer
char buf[126] - (126 bytes reserved on stack)

StGCy(bUf ’ Stl’) : % Copy argument into local buffer

}

® \When this function is invoked, a new frame is
pushed onto the stack

< Stack grows this way
buf Top of
stack
~ Y
Local variables Pointer to Execute Arguments

previous code at
frame this address
— after func()
finishes slide 14

O T L S S ¢ AT U G R T, S W S e T T e T R R e T o e L T e TR W o T T T e L T e T
TR I O i e T T e N L Y P T i o T e T S T Y P i T e T T P T i e T T e S L P

P R T

=S e AT

€ Memory pointed to by str is copied onto stack...

voild func(char *str) {

char buf[126]; strcpy does not check whether the string
st GCy(buf ,st r) - at *str contains fewer than 126 characters

}

@ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

buf over@[.

H_I

This will be
interpreted
as return address!

slide 15

Executing Attack Code

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

Y
code

A\
N

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve(“/bin/sh”)

Top of
stack

In the overflow, a pointer back
Into the buffer appears in
the location where the system
expects to find return address

€ \When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

slide 16

Buffer Overflow Issues

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ Basic exploit: executable attack code is stored on

stack, in the buffer containing attacker’s string
e Stack memory usually contains only data, but...

@ For the basic exploit, overflow portion of the
buffer must contain correct address of attack
code In the RET position

e The value in the RET position must point to the
beginning of attack assembly code in the buffer
— Otherwise application will crash with segmentation violation

e Attacker must correctly guess in which stack position
his buffer will be when the function is called

slide 17

Stack Co

LH AL

I'r

ph o VA A R

uption:

= Pl

RS B B O H L

int bar (int
int ;
foo (a_function_pointer);

}
-
int foo (void (*)()) {
char* = point_to_an_array;
char buf[128];
gets (buf);
strncpy(ptr, buf, 8);

(*funcp)();

) {

z

Most popular

st

General Vie

/

target

Ty e il

EOCREN Y oAb A L L L P R

L L E oA G

e ']
dde BT

vall

val2

arguments (funcp)

return address

Previous Frame Pointer

pointer var (ptr)

buffer (buf)

|

String
grows

Stack
grows

slide 18

Attack #1: Return Address

: T P A A T R A

|
@ set stack pointers to
v return to a dangerous
library function
Attack code |~ “/bin/sh”
args (funcp)
system()
(D Change the return address to point
PFP
to the attack code. After the :
function returns, control is pointer var (ptr)
transferred to the attack code. buffer (buf)

(2 ... or return-to-libc: use existing
instructions in the code segment
such as system(), exec(), etc. as
the attack code.

slide 19

Problem: No Range Checking

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

@ strcpy does not check input size

e strcpy(buf, str) simply copies memory contents into
buf starting from *str until “\O” is encountered,
Ignoring the size of area allocated to buf

¥ Many C library functions are unsafe

e strcpy(char *dest, const char *src)

e strcat(char *dest, const char *src)

e gets(char *s)

e scanf(const char *format, ...)

e printf(const char *format, ...)

slide 20

Does Range Checking Help?

W P) e W Y P i G T e e T Y . S o o T e S T Y P S o e W S T Y IR o R R

@ strnecpy(char *dest, const char *src, size t n)

e |f strncpy iIs used instead of strcpy, no more than n
characters will be copied from *src to *dest
— Programmer has to supply the right value of n

Potential overflow in htpasswd.c (Apache 1.3)
. strcpy(record, user) “Zﬁ

Copies username (“user”) into buffer (“record”),

strcat(reco rd) then appends “:” and hashed password (“cpw”)

Strcat(record pr)

@ Published “fix” (do you see the problem?)

. strncpy(record user MAX STRING LEN-1);
strcat(record,’ ;
strncat(record cpw MAX STRING_LEN-1);

slide 21

I\/Ilsuse of strncpy I htpasswd le

S Rl N N AL L P el R e B L H AL A b L b L A AR i T T

@ Published “fix” for Apache htpasswd overflow:

. strncpy(record user MAX STRING _LEN-1);
strcat(record,’ ;
strncat(record cpw MAX STRING_LEN-1);

MAX_STRING_LEN bytes allocated for record buffer

A
~ —

contents of *user . contents of *cpw

/\
o o] | 2a ot
Put up to MAX_STRING_LEN-1 Again put up to MAX_STRING_LEN-1

characters into buffer characters into buffer

slide 22

Off-By-One Overflow

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

¥ Home-brewed range-checking string copy

void notSoSafeCopy(char *input) { i Wi
char buffer‘ESlZ] int 1; T'l'ﬁ;ﬂl{;?i’y.n%
for (i:O; i 12+ I++) buffer. Oops!
buffer[1] = input[i];
¥
void main(int argc, char *argv[]) {
1T (argc==2)
notSoSafeCopy(argv[1]):;
¥

@ 1-byte overflow: can't change RET, but can
change pointer to previous stack frame
e On little-endian architecture, make it point into buffer
e RET for previous function will be read from buffer!

slide 23

Attack #2: Frame Pointer

Attack code

(1 Change the caller’s saved frame
pointer to point to attack-controlled
memory. Caller’s return address will
be read from this memory.

slide 24

Function

Pointer Overflo

O I i o T T e T T L T P T i g o T e T S I i T e T L T P T i

A T e N T T P P i S

e SR e TR

@ C uses function pointers for callbacks: if pointer to
F is stored in memory location P, then another

function G can call F as (*P)(...)

Buffer with attacker-supplied Callback
input string pointer
— A —~ A \
attack code overflow
()

¥

Legitimate function F

(elsewhere in memory)

slide 25

Attack #3: Pointer Variables

Global Offset Table

A

Attack code

Function pointer

—

(1 Change a function pointer to point
to the attack code.

(2 Any memory, even outside the
stack, can be modified by the
statement that stores a value into
the compromised pointer.

strncpy(ptr, buf, 8);
*ptr=0;

ke

s b e H AL S]

args (funcp)
return address

PFP

pointer var (ptr)
buffer (buf)

slide 26

Heap Overflow

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

€ Overflowing buffers on heap can change pointers
that point to important data
e Sometimes can also transfer execution to attack code
e Can cause program to crash by forcing it to read from

an invalid address (segmentation violation)

@ lllegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use
It to write into a normally inaccessible file

e For example, replace a filename pointer with a pointer
Into buffer location containing name of a system file
— Instead of temporary file, write into AUTOEXEC.BAT

slide 27

Start Thinking About a Project

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

® A few ideas are on the course website

® Several ways to go about it
e Build a tool that improves software security
— Analysis, verification, attack detection, attack containment
e Apply an existing tool to a real-world system
e Demonstrate feasibility of some attack
e Do a substantial theoretical study
e Invent something of your own

@ Start forming teams and thinking about potential
topics early on!

slide 28

Some ldeas (More Later)
€ Sandboxes and reference monitors
@ Enforcing security policies with transactions

¥ E-commerce protocols
e Micropayment schemes, secure electronic transactions

@ \Wireless security
e Ad-hoc routing, WIFi security, location security

@ Enforcing legally mandated privacy policies
® Security for voice-over-IP
& Choose something that interests you!

slide 29

Reading Assignment

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i) - R B

€ Read “Smashing the Stack for Fun and Profit”
and “Blended Attacks”

e Links on the course website

@ For better understanding, read other reference
materials on buffer overflow on the course site

e Sotirov and Dowd’s “Bypassing Browser Memory
Protections”

e This will help when we talk about defenses later on

slide 30

	Theory and Practice of�Secure Systems
	Course Logistics
	Grading
	Prerequisites
	What This Course is Not About
	Correctness vs. Security
	The Meaning of the Lock
	Theme #1: Software Security
	Theme #2: Privacy
	And Now�Our Feature Presentation
	Famous Internet Worms
	Why Are We Insecure?
	Memory Exploits
	Stack Buffers
	What If Buffer Is Overstuffed?
	Executing Attack Code
	Buffer Overflow Issues
	Stack Corruption: General View
	Attack #1: Return Address
	Problem: No Range Checking
	Does Range Checking Help?
	Misuse of strncpy in htpasswd “Fix”
	Off-By-One Overflow
	Attack #2: Frame Pointer
	Function Pointer Overflow
	Attack #3: Pointer Variables
	Heap Overflow
	Start Thinking About a Project
	Some Ideas (More Later)
	Reading Assignment

