
slide 1

Theory and Practice of
Secure Systems

Vitaly Shmatikov

CS 380S

http://www.cs.utexas.edu/~shmat/courses/cs380s/

slide 2

Course Logistics

�Lectures: Tuesday and Thursday, 2-3:30pm
�Instructor: Vitaly Shmatikov

• Office: TAYLOR 4.115C
• Office hours: Tuesday, 3:30-4:30pm (after class)
• Open door policy – don’t hesitate to stop by!

�TA: Rolf Rolles
• Office hours: Wed, 1-2pm in ENS 31NQ, desk #4

�No textbook; we will read a fair number of
research papers

�Watch the course website for lecture notes,
assignments, and reference materials

slide 3

Grading

�Homeworks: 40% (4 homeworks, 10% each)
• Homework problems will be based on research papers

�Midterm: 15%
�Project: 45%

• Computer security is a contact sport – the best way to
understand it is to get your hands dirty

• Projects can be done individually or in small teams
• Project proposal due in late September

– More details later

• I will provide a list of potential project ideas, but don’t
hesitate to propose your own

slide 4

Prerequisites

�Basic understanding of operating systems and
memory management
• At the level of an undergraduate OS course

�Some familiarity with cryptography is helpful
• Cryptographic hash functions, public-key and

symmetric cryptosystems

�Undergraduate course in complexity and/or
theory of computation

�Ask me if you are not sure whether you are
qualified to take this course

slide 5

What This Course is Not About

�Not a comprehensive course on computer security
�Not a course on cryptography

• We will cover some crypto when talking about provable
security

�Not a seminar course
• We will read and understand state-of-the-art research

papers, but you’ll also have to do some actual work ☺

�Focus on several specific research areas
• Mixture of theory and systems (very unusual!)

�You have a lot of leeway in picking your project

slide 6

Correctness vs. Security

�Program or system correctness:
program satisfies specification
• For reasonable input, get reasonable output

�Program or system security:
program properties preserved in face of attack
• For unreasonable input, output not completely disastrous

�Main difference: adversary
• Active interference from a malicious agent
• It is very difficult to come up with a model that captures

all possible adversarial actions
– Look at how adversary is modeled in “systems” and in “theory”

slide 7

The Meaning of the Lock

What does this lock mean?

https://

How about
this lock?

slide 8

Theme #1: Software Security

�Vulnerabilities and attacks
• Memory corruption attacks
• Access control violations and concurrency attacks
• Web security: browsers and Web applications
• Side-channel attacks (if time permits): timing, power

�Detecting and containing malicious behavior
• Isolation, reference monitors, intrusion detection

�Preventing attacks
• Memory protection
• Applications of static analysis to security
• Information flow control

slide 9

Theme #2: Privacy

�Theoretical models
• Semantic security
• Secure multi-party computation
• Introduction to zero knowledge
• Key concept: provable security

�Data privacy
• Query auditing and randomization
• Privacy-preserving data mining
• Differential privacy

slide 10

And Now
Our Feature Presentation

slide 11

Famous Internet Worms

�Morris worm (1988): overflow in fingerd
• 6,000 machines infected (10% of existing Internet)

�CodeRed (2001): overflow in MS-IIS server
• 300,000 machines infected in 14 hours

�SQL Slammer (2003): overflow in MS-SQL server
• 75,000 machines infected in 10 minutes (!!)

�Sasser (2004): overflow in Windows LSASS
• Around 500,000 machines infected

�Conficker (2008-09): overflow in Windows Server
• Around 10 million machines infected (estimates vary)

Responsible for user
authentication in Windows

slide 12

Why Are We Insecure?

�126 CERT security advisories (2000-2004)
�Of these, 87 are memory corruption vulnerabilities
�73 are in applications providing remote services

• 13 in HTTP servers, 7 in database services, 6 in remote
login services, 4 in mail services, 3 in FTP services

�Most exploits involve illegitimate control transfers
• Jumps to injected attack code, return-to-libc, etc.
• Therefore, most defenses focus on control-flow security

�But exploits can also target configurations, user
data and decision-making values

[Chen et al. 2005]

slide 13

�Buffer is a data storage area inside computer
memory (stack or heap)
• Intended to hold pre-defined amount of data
• If executable code is supplied as “data”, victim’s

machine may be fooled into executing it
– Code will self-propagate or give attacker control over machine

�Attack can exploit any memory operation
• Pointer assignment, format strings, memory allocation

and de-allocation, function pointers, calls to library
routines via offset tables

Memory Exploits

slide 14

Stack Buffers

�Suppose Web server contains this function
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

�When this function is invoked, a new frame is
pushed onto the stack

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

Top of
stack

Stack grows this way

buf sfp
ret

addr str

Local variables

Frame of the
calling function

Execute
code at

this address
after func()

finishes

ArgumentsPointer to
previous
frame

slide 15

What If Buffer Is Overstuffed?

�Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

�If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

strcpy does not check whether the string
at *str contains fewer than 126 characters

buf str

This will be
interpreted

as return address!

overflow Top of
stack

Frame of the
calling function

slide 16

Executing Attack Code

�Suppose buffer contains attacker-created string
• For example, *str contains a string received from the

network as input to some network service daemon

�When function exits, code in the buffer will be
executed, giving attacker a shell
• Root shell if the victim program is setuid root

code str Frame of the
calling functionret

Attacker puts actual assembly
instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in

the location where the system
expects to find return address

Top of
stack

slide 17

�Basic exploit: executable attack code is stored on
stack, in the buffer containing attacker’s string
• Stack memory usually contains only data, but…

�For the basic exploit, overflow portion of the
buffer must contain correct address of attack
code in the RET position
• The value in the RET position must point to the

beginning of attack assembly code in the buffer
– Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position
his buffer will be when the function is called

Buffer Overflow Issues

int foo (void (*funcp)()) {
char* ptr = point_to_an_array;
char buf[128];
gets (buf);
strncpy(ptr, buf, 8);
(*funcp)();

}

String
grows

Stack
grows

int bar (int val1) {
int val2;
foo (a_function_pointer);

}

Contaminated
memory

Most popular
target

val1
val2

arguments (funcp)
return address
Previous Frame Pointer
pointer var (ptr)
buffer (buf)

Stack Corruption: General View

slide 18

args (funcp)
return address
PFP
pointer var (ptr)
buffer (buf)

Attack code

① Change the return address to point
to the attack code. After the
function returns, control is
transferred to the attack code.

② … or return-to-libc: use existing
instructions in the code segment
such as system(), exec(), etc. as
the attack code.

①

② set stack pointers to
return to a dangerous

library function

“/bin/sh”

system()

Attack #1: Return Address

slide 19

slide 20

Problem: No Range Checking

�strcpy does not check input size
• strcpy(buf, str) simply copies memory contents into

buf starting from *str until “\0” is encountered,
ignoring the size of area allocated to buf

�Many C library functions are unsafe
• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …)

slide 21

�strncpy(char *dest, const char *src, size_t n)
• If strncpy is used instead of strcpy, no more than n

characters will be copied from *src to *dest
– Programmer has to supply the right value of n

�Potential overflow in htpasswd.c (Apache 1.3)
… strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw); …

�Published “fix” (do you see the problem?)
… strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

slide 22

�Published “fix” for Apache htpasswd overflow:
… strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

slide 23

�Home-brewed range-checking string copy
void notSoSafeCopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}
void main(int argc, char *argv[]) {

if (argc==2)
notSoSafeCopy(argv[1]);

}

Off-By-One Overflow

�1-byte overflow: can’t change RET, but can
change pointer to previous stack frame
• On little-endian architecture, make it point into buffer
• RET for previous function will be read from buffer!

This will copy 513
characters into
buffer. Oops!

args (funcp)
return address
PFP
pointer var (ptr)
buffer (buf)

Attack code

Fake return addr
Fake PFP

Attack #2: Frame Pointer

① Change the caller’s saved frame
pointer to point to attack-controlled
memory. Caller’s return address will
be read from this memory.

slide 24

slide 25

�C uses function pointers for callbacks: if pointer to
F is stored in memory location P, then another
function G can call F as (*P)(…)

Function Pointer Overflow

attack code

Buffer with attacker-supplied
input string

Callback
pointer

Legitimate function F

overflow

(elsewhere in memory)

args (funcp)
return address
PFP
pointer var (ptr)
buffer (buf)

Attack code

① Change a function pointer to point
to the attack code.

② Any memory, even outside the
stack, can be modified by the
statement that stores a value into
the compromised pointer.
strncpy(ptr, buf, 8);
*ptr = 0;

Function pointer

Global Offset Table

①

②

Attack #3: Pointer Variables

slide 26

slide 27

�Overflowing buffers on heap can change pointers
that point to important data
• Sometimes can also transfer execution to attack code
• Can cause program to crash by forcing it to read from

an invalid address (segmentation violation)

�Illegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use
it to write into a normally inaccessible file
• For example, replace a filename pointer with a pointer

into buffer location containing name of a system file
– Instead of temporary file, write into AUTOEXEC.BAT

Heap Overflow

slide 28

Start Thinking About a Project

�A few ideas are on the course website
�Several ways to go about it

• Build a tool that improves software security
– Analysis, verification, attack detection, attack containment

• Apply an existing tool to a real-world system
• Demonstrate feasibility of some attack
• Do a substantial theoretical study
• Invent something of your own

�Start forming teams and thinking about potential
topics early on!

slide 29

Some Ideas (More Later)

�Sandboxes and reference monitors
�Enforcing security policies with transactions
�E-commerce protocols

• Micropayment schemes, secure electronic transactions

�Wireless security
• Ad-hoc routing, WiFi security, location security

�Enforcing legally mandated privacy policies
�Security for voice-over-IP
�Choose something that interests you!

slide 30

Reading Assignment

�Read “Smashing the Stack for Fun and Profit”
and “Blended Attacks”
• Links on the course website

�For better understanding, read other reference
materials on buffer overflow on the course site
• Sotirov and Dowd’s “Bypassing Browser Memory

Protections”
• This will help when we talk about defenses later on

	Theory and Practice of�Secure Systems
	Course Logistics
	Grading
	Prerequisites
	What This Course is Not About
	Correctness vs. Security
	The Meaning of the Lock
	Theme #1: Software Security
	Theme #2: Privacy
	And Now�Our Feature Presentation
	Famous Internet Worms
	Why Are We Insecure?
	Memory Exploits
	Stack Buffers
	What If Buffer Is Overstuffed?
	Executing Attack Code
	Buffer Overflow Issues
	Stack Corruption: General View
	Attack #1: Return Address
	Problem: No Range Checking
	Does Range Checking Help?
	Misuse of strncpy in htpasswd “Fix”
	Off-By-One Overflow
	Attack #2: Frame Pointer
	Function Pointer Overflow
	Attack #3: Pointer Variables
	Heap Overflow
	Start Thinking About a Project
	Some Ideas (More Later)
	Reading Assignment

