
slide 1

Vitaly Shmatikov

CS 380S

Memory Corruption Exploits

Slides on return-oriented programming
courtesy of Hovav Shacham

slide 2

Reading Assignment

scut / team teso. “Exploiting format string
vulnerabilities”.
Dowd. “Leveraging the ActionScript Virtual
Machine”.
Chen et al. “Non-control-data attacks are realistic
threats” (Usenix Security 2005).
Roemer et al. “Return-oriented programming”.
Optional:
• “Basic integer overflows”, “w00w00 on heap

overflows”, “Once upon a free()...”

slide 3

Variable Arguments in C

In C, can define a function with a variable
number of arguments
• Example: void printf(const char* format, …)

Examples of usage:

Format specification encoded by
special %-encoded characters

• %d,%i,%o,%u,%x,%X – integer argument
• %s – string argument
• %p – pointer argument (void *)
• Several others

Implementation of Variable Args

Special functions va_start, va_arg, va_end
compute arguments at run-time

slide 4

slide 5

Frame with Variable Arguments

va_start computes
location on the stack
past last statically
known argument

va_arg(ap,type)
retrieves next arg
from offset ap

slide 6

Proper use of printf format string:
… int foo=1234;
printf(“foo = %d in decimal, %X in hex”,foo,foo); …

– This will print
foo = 1234 in decimal, 4D2 in hex

Sloppy use of printf format string:
… char buf[13]=“Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf); …

– If buffer contains a format symbol starting with %, location
pointed to by printf’s internal stack pointer will be interpreted
as an argument of printf. This can be exploited to move
printf’s internal stack pointer!

Format Strings in C

slide 7

%n format symbol tells printf to write the number
of characters that have been printed

… printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address
– This writes 14 into myVar

What if printf does not have an argument?
… char buf[16]=“Overflow this!%n”;
printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will
be interpreted as the address into which the number of
characters will be written!

Writing Stack with Format Strings

slide 8

Using %n to Mung Return Address

RET“… attackString%n”, attack code &RET

Overwrite location under printf’s stack
pointer with RET address; then

printf(buffer) will write the number of
characters in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied
input string

Number of characters in
attackString must be

equal to … what?

See “Exploiting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols: %Mx will print exactly M bytes (taking them
from the stack). If attackString contains enough “%Mx” so that its total length is equal to the
most significant byte of the address of the attack code, this byte will be written into &RET.

Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, replacing RET
with the address of attack code.

This portion contains
enough % symbols
to advance printf’s

internal stack pointer

slide 9

Chen and Wagner study (2007)
• “Large-scale analysis of format string vulnerabilities in

Debian Linux”

Analyzed a large fraction of the Debian Linux 3.1
distribution using CQual, a static taint analysis tool
• 92 million lines of C and C++ code
• Objective: find “tainted” format strings (controlled by

user, yet used in printf and similar functions)

Taint violations reported in 1533 packages
Estimated 85% are real format string bugs
(Why not 100%?)

Bad Format Strings in the Wild

slide 10

Configuration parameters
• E.g., directory names that confine remotely invoked

programs to a portion of the server’s file system

Pointers to names of system programs
• E.g., replace the name of a harmless script with an

interactive shell (not the same as return-to-libc)
• System call interposition doesn’t help unless it verifies

call arguments and not just the name of the routine

Branch conditions in input validation code

Targets of Memory Corruption

slide 11

Example: Web Server Security

CGI scripts are executables on the server that
can be invoked by remote user via a special URL
• http://www.server.com/cgi-bin/SomeProgram

Don’t want remote users executing arbitrary
programs with Web server’s privileges
• Especially if the Web server runs with root privileges
• Need to restrict which programs can be executed

CGI-BIN is the directory name which is always
prepended to the name of the CGI script
• If CGI-BIN is /usr/local/httpd/cgi-bin, the above URL

will execute /usr/local/httpd/cgi-bin/SomeProgram

slide 12

Exploiting Null HTTP Heap Overflow

Null HTTPD had a heap overflow vulnerability
• When corrupted buffer is freed, an overflown value is

copied to a location whose address is read from an
overflown memory area

• This enables attacker to copy an arbitrary value into a
memory location of his choice

Standard exploit: copy address of attack code into
the table containing addresses of library functions
• Transfers control to attacker’s code next time the library

function is called

Alternative: overwrite the value of CGI-BIN

slide 13

Null HTTP CGI-BIN Exploit

slide 14

Another Web Server: GHTTPD

Check that URL doesn’t contain “/..”

Value at *ptr changes after it was checked
but before it was used! (This is a TOCTTOU attack)

Register containing pointer to URL
is pushed onto stack…

… overflown

… and read from stackAt this point, overflown *ptr may point
to a string containing “/..”

slide 15

SSH Authentication Code

Loop until one of
the authentication
methods succeeds

detect_attack() prevents
checksum attack on SSH1…

…and also contains an
overflow bug which permits
the attacker to put any value
into any memory location

write 1 here

Break out of authentication
loop without authenticating
properly

slide 16

Reducing Lifetime of Critical Data

Reset flag here, right before
doing the checks

slide 17

Two’s Complement

Binary representation of negative integers
Represent X (where X<0) as 2N-|X|

N is word size (e.g., 32 bits on x86 architecture)

0 0 0 0 … 0 1

0 1 1 1 … 1 1

1 1 1 1 … 1 1

1 1 1 1 … 1 0

1 0 0 0 … 0 0

1

231-1

-1

-2

-231

231 ??

slide 18

Integer Overflow

static int getpeername1(p, uap, compat) {
// In FreeBSD kernel, retrieves address of peer to which a socket is connected

…
struct sockaddr *sa;
…

len = MIN(len, sa->sa_len);
… copyout(sa, (caddr_t)uap->asa, (u_int)len);
…

}

Checks that “len” is not too big

Copies “len” bytes from
kernel memory to user space

Negative “len” will always pass this check…

… interpreted as a huge
unsigned integer here

… will copy up to 4G of
kernel memory

slide 19

ActionScript Exploit

ActionScript 3 is a scripting language for Flash
• Basically, JavaScript for Flash animations
• For performance, Flash 9 and higher compiles scripts

into bytecode for ActionScript Virtual Machine (AVM2)

Flash plugins are installed on millions of
browsers, thus a perfect target for attack
• Different Flash binaries are used for Internet Explorer

and Firefox, but this turns out not to matter

Exploit published in April 2008

[Dowd]

call SWF_GetEncodedInteger ; Scene Count
mov edi, [ebp+arg_0]
mov [esi+4], eax
mov ecx, [ebx+8]
sub ecx, [ebx+4]
cmp eax, ecx
jg loc_30087BB4
…
push eax
call mem_Calloc

Processing SWF Scene Records (1)

How much memory is neded to store scenes

Code that allocates memory
for scene records:

Total size of the buffer
Offset into the buffer
Is there enough memory in the buffer?
(signed comparison)

What if scene count is negative?

Tell mem_Calloc how many bytes to allocate
Interprets its argument as unsigned integer

Supplied as part of SWF file from
potentially malicious website

mem_Calloc fails (why?) and
returns NULL slide 20

Processing SWF Scene Records (2)

Scene records are copied as follows:
• Start with pointer P returned by allocator
• Loop through and copy scenes until count ≤ 0
• Copy frame count into P + offset, where offset is

determined by scene count
– Frame count also comes from the SWF file
– It is a “short” (16-bit) value, but written as a 32-bit DWORD

Attacker gains the ability to write one value into
any location in memory (why?)
• … subject to some restrictions (see paper)
• But this is not enough to hijack control directly (why?)

slide 21

slide 22

ActionScript Virtual Machine (AVM2)

Register-based VM
• Bytecode instructions write and read from “registers”

“Registers”, operand stack, scope stack allocated
on the same runtime stack as used by Flash itself
• “Registers” are mapped to locations on the stack and

accessed by index (converted into memory offset)
• This is potentially dangerous (why?)

Malicious Flash script could hijack browser’s host
• Malicious bytecode can write into any location on the

stack by supplying a fake register index
• This would be enough to take control (how?)

slide 23

AVM2 Verifier

ActionScript code is verified before execution
All bytecodes must be valid
• Throw an exception if encountering an invalid bytecode

All register accesses correspond to valid locations
on the stack to which registers are mapped
For every instruction, calculate the number of
operands, ensure that operands of correct type
will be on the stack when it is executed
All values are stored with correct type information
• Encoded in bottom 3 bits

Relevant Verifier Code

…
if(AS3_argmask[opCode] == 0xFF) {

… throw exception …
}
…
opcode_getArgs(…)
…

void opcode_getArgs(…) {
DWORD mask=AS3_argmask[opCode];
…
if(mask <=0) { … return … }
… *arg_dword1 = SWF_GetEncodedInteger(&ptr);
if(mask>1) *arg_dword2 = SWF_GetEncodedInteger(&ptr);

}

Invalid bytecode

Determine operands

Number of operands for each opcode
is defined in AS3_argmask array

slide 24

slide 25

Executing Invalid Opcodes

If interpreter encounters an invalid opcode, it
silently skips it and continues executing
• Doesn’t really matter because this can’t happen

– Famous last words…

• AS3 code is executed only after it has been verified,
and verifier throws an exception on invalid bytecode

But if we could somehow trick the verifier…
• Bytes after the opcode are treated as data (operands)

by the verifier, but as executable code by interpreter
• This is an example of a TOCTTOU (time-of-check-to-

time-of-use) vulnerability

slide 26

Breaking AVM2 Verifier

slide 27

Breaking AVM2 Verifier

Pick an invalid opcode
Use the ability to write into arbitrary memory to
change the AS3_argmask of that opcode from
0xFF to something else
AVM2 verifier will treat it as normal opcode and
skip subsequent bytes as operands
• How many? This is also determined by AS3_argmask!

AVM2 interpreter, however, will skip the invalid
opcode and execute those bytes
You can now execute unverified ActionScript code

slide 28

Further Complications

Can execute only a few unverified bytecodes at a
time (why?)
• Use multiple “marker” opcodes with overwritten masks

Cannot directly overwrite saved EIP on the
evaluation stack with the address of shellcode
because 3 bits are clobbered by type information
• Stack contains a pointer to current bytecode (codePtr)
• Move it from one “register” to another, overwrite EIP
• Bytecode stream pointed to by codePtr should contain

a jump to the actual shellcode

Read the paper

Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection
• Put malicious code at a predictable location in

memory, usually masquerading as data
• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Idea: prevent execution of untrusted code
• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., ActionScript)

• Digitally sign all code
• Ensure that all control transfers are into a trusted,

approved code image
slide 29

W⊕X / DEP

Mark all writeable memory locations as non-
executable
• Example: Microsoft’s DEP (Data Execution Prevention)
• This blocks all code injection exploits

Hardware support
• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
• Makes memory page non-executable

Widely deployed
• Windows (since XP SP2), Linux (via PaX patches),

OpenBSD, OS X (since 10.5)

slide 30

What Does W⊕X Not Prevent?

Can still corrupt stack …
• … or function pointers or critical data on the heap, but

that’s not important right now

As long as “saved EIP” points into existing code,
W⊕X protection will not block control transfer
This is the basis of return-to-libc exploits
• Overwrite saved EIP with address of any library

routine, arrange memory to look like arguments

Does not look like a huge threat
• Attacker cannot execute arbitrary code
• … especially if system() is not available

slide 31

return-to-libc on Steroids

Overwritten saved EIP need not point to the
beginning of a library routine
Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?
• Execution will be transferred… to where?
• Read the word pointed to by stack pointer (ESP)

– Guess what? Its value is under attacker’s control! (why?)

• Use it as the new value for EIP
– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack
slide 32

Chaining RETs for Fun and Profit

Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the

borrowed code chunks exploitation technique” (2005)

What is this good for?
Answer [Shacham et al.]: everything
• Turing-complete language
• Build “gadgets” for load-store, arithmetic,

logic, control flow, system calls
• Attack can perform arbitrary computation

using no injected code at all!

slide 33

[Shacham et al]

Ordinary Programming

Instruction pointer (EIP) determines which
instruction to fetch and execute
Once processor has executed the instruction, it
automatically increments EIP to next instruction
Control flow by changing value of EIP

slide 34

Return-Oriented Programming

Stack pointer (ESP) determines which instruction
sequence to fetch and execute
Processor doesn’t automatically increment ESP
• But the RET at end of each instruction sequence does

slide 35

No-ops

No-op instruction does nothing but advance EIP
Return-oriented equivalent
• Point to return instruction
• Advances ESP

Useful in a NOP sled (what’s that?)

slide 36

Immediate Constants

Instructions can encode constants
Return-oriented equivalent
• Store on the stack
• Pop into register to use

slide 37

Control Flow

slide 38

Ordinary programming
• (Conditionally) set EIP to new value

Return-oriented equivalent
• (Conditionally) set ESP to new value

Gadgets: Multi-instruction Sequences

Sometimes more than one instruction sequence
needed to encode logical unit
Example: load from memory into register
• Load address of source word into EAX
• Load memory at (EAX) into EBX

slide 39

“The Gadget”: July 1945

slide 40

Gadget Design

Testbed: libc-2.3.5.so, Fedora Core 4
Gadgets built from found code sequences:
• Load-store, arithmetic & logic, control flow, syscalls

Found code sequences are challenging to use!
• Short; perform a small unit of work
• No standard function prologue/epilogue
• Haphazard interface, not an ABI
• Some convenient instructions not always available

slide 41

Conditional Jumps

cmp compares operands and sets a number of
flags in the EFLAGS register
• Luckily, many other ops set EFLAGS as a side effect

jcc jumps when flags satisfy certain conditions
• But this causes a change in EIP… not useful (why?)

Need conditional change in stack pointer (ESP)
Strategy:
• Move flags to general-purpose register
• Compute either delta (if flag is 1) or 0 (if flag is 0)
• Perturb ESP by the computed delta

slide 42

Phase 1: Perform Comparison

neg calculates two’s complement
• As a side effect, sets carry flag (CF)

if the argument is nonzero

Use this to test for equality
sub is similar, use to test if one
number is greater than another

slide 43

Phase 2: Store 1-or-0 to Memory

slide 44

Clear ECX
EDX points to destination
adc adds up its operands & the carry flag;
result will be equal to the carry flag (why?)
Store result of adc into destination

Two’s-complement
negation:
0 becomes 0…0;
1 becomes 1…1

Bitwise AND with delta
(in ESI)

slide 45

Phase 3: Compute Delta-or-Zero

Phase 4: Perturb ESP by Delta

slide 46

Finding Instruction Sequences

Any instruction sequence ending in RET is useful
Algorithmic problem: recover all sequences of
valid instructions from libc that end in a RET
At each RET (C3 byte), look back:
• Are preceding i bytes a valid instruction?
• Recur from found instructions

Collect instruction sequences in a trie

slide 47

ret}

Unintended Instructions
c7
45
d4
01
00
00
00
f7
c7
07
00
00
00
0f
95
45
c3

movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc %ebp}

}

slide 48

Actual code from ecb_crypt()

x86 Architecture Helps

Register-memory machine
• Plentiful opportunities for accessing memory

Register-starved
• Multiple sequences likely to operate on same register

Instructions are variable-length, unaligned
• More instruction sequences exist in libc
• Instruction types not issued by compiler may be

available

Unstructured call/ret ABI
• Any sequence ending in a return is useful

slide 49

SPARC: the Un-x86

Load-store RISC machine
• Only a few special instructions access memory

Register-rich
• 128 registers; 32 available to any given function

All instructions 32 bits long; alignment enforced
• No unintended instructions

Highly structured calling convention
• Register windows
• Stack frames have specific format

slide 50

ROP on SPARC

Testbed: Solaris 10 libc (1.3 MB)
Use instruction sequences that are suffixes of real
functions
Dataflow within a gadget
• Structured dataflow to dovetail with calling convention

Dataflow between gadgets
• Each gadget is memory-memory

Turing-complete computation!
Read paper for details

slide 51

	Memory Corruption Exploits
	Reading Assignment
	Variable Arguments in C
	Implementation of Variable Args
	Frame with Variable Arguments
	Format Strings in C
	Writing Stack with Format Strings
	Using %n to Mung Return Address
	Bad Format Strings in the Wild
	�Targets of Memory Corruption
	Example: Web Server Security
	Exploiting Null HTTP Heap Overflow
	Null HTTP CGI-BIN Exploit
	Another Web Server: GHTTPD
	SSH Authentication Code
	Reducing Lifetime of Critical Data
	Two’s Complement
	Integer Overflow
	ActionScript Exploit
	Processing SWF Scene Records (1)
	Processing SWF Scene Records (2)
	ActionScript Virtual Machine (AVM2)
	AVM2 Verifier
	Relevant Verifier Code
	Executing Invalid Opcodes
	Breaking AVM2 Verifier
	Breaking AVM2 Verifier
	Further Complications
	Buffer Overflow: Causes and Cures
	WX / DEP
	What Does WX Not Prevent?
	return-to-libc on Steroids
	Chaining RETs for Fun and Profit
	Ordinary Programming
	Return-Oriented Programming
	No-ops
	Immediate Constants
	Control Flow
	Gadgets: Multi-instruction Sequences
	“The Gadget”: July 1945
	Gadget Design
	Conditional Jumps
	Phase 1: Perform Comparison
	Phase 2: Store 1-or-0 to Memory
	Phase 3: Compute Delta-or-Zero
	Phase 4: Perturb ESP by Delta
	Finding Instruction Sequences
	Unintended Instructions
	x86 Architecture Helps
	SPARC: the Un-x86
	ROP on SPARC

