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Reading Assignment

scut / team teso. “Exploiting format string 
vulnerabilities”.
Dowd. “Leveraging the ActionScript Virtual 
Machine”.
Chen et al. “Non-control-data attacks are realistic 
threats” (Usenix Security 2005).
Roemer et al. “Return-oriented programming”.
Optional:
• “Basic integer overflows”, “w00w00 on heap 

overflows”, “Once upon a free()...”
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Variable Arguments in C

In C, can define a function with a variable 
number of arguments
• Example: void printf(const char* format, …)

Examples of usage:

Format specification encoded by
special %-encoded characters

• %d,%i,%o,%u,%x,%X – integer argument
• %s – string argument
• %p – pointer argument (void *)
• Several others



Implementation of Variable Args

Special functions va_start, va_arg, va_end
compute arguments at run-time
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Frame with Variable Arguments

va_start computes
location on the stack
past last statically
known argument

va_arg(ap,type)
retrieves next arg 
from offset ap
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Proper use of printf format string:
… int foo=1234; 
printf(“foo = %d in decimal, %X in hex”,foo,foo); …

– This will print 
foo = 1234 in decimal, 4D2 in hex

Sloppy use of printf format string:
… char buf[13]=“Hello, world!”; 
printf(buf);
// should’ve used printf(“%s”, buf); …

– If buffer contains a format symbol starting with %, location
pointed to by printf’s internal stack pointer will be interpreted
as an argument of printf.  This can be exploited to move
printf’s internal stack pointer!

Format Strings in C
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%n format symbol tells printf to write the number 
of characters that have been printed

… printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address
– This writes 14 into myVar

What if printf does not have an argument?
… char buf[16]=“Overflow this!%n”; 
printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will 
be interpreted as the address into which the number of 
characters will be written!

Writing Stack with Format Strings
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Using %n to Mung Return Address

RET“… attackString%n”, attack code &RET

Overwrite location under printf’s stack
pointer with RET address; then

printf(buffer) will write the number of 
characters in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied 
input string

Number of characters in
attackString must be 

equal to … what?

See “Exploiting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols: %Mx will print exactly M bytes (taking them 
from the stack).  If attackString contains enough “%Mx” so that  its total length is equal to the 
most significant byte of the address of the attack code,  this byte will be written into &RET. 

Repeat three times (four “%n” in total) to write into &RET+1, &RET+2, &RET+3, replacing RET 
with the address of attack code.

This portion contains
enough % symbols
to advance printf’s

internal stack pointer
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Chen and Wagner study (2007)
• “Large-scale analysis of format string vulnerabilities in 

Debian Linux”

Analyzed a large fraction of the Debian Linux 3.1 
distribution using CQual, a static taint analysis tool
• 92 million lines of C and C++ code
• Objective: find “tainted” format strings (controlled by 

user, yet used in printf and similar functions)

Taint violations reported in 1533 packages
Estimated 85% are real format string bugs
(Why not 100%?)

Bad Format Strings in the Wild



slide 10

Configuration parameters
• E.g., directory names that confine remotely invoked 

programs to a portion of the server’s file system

Pointers to names of system programs
• E.g., replace the name of a harmless script with an 

interactive shell (not the same as return-to-libc)
• System call interposition doesn’t help unless it verifies 

call arguments and not just the name of the routine

Branch conditions in input validation code

Targets of Memory Corruption
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Example: Web Server Security

CGI scripts are executables on the server that 
can be invoked by remote user via a special URL
• http://www.server.com/cgi-bin/SomeProgram

Don’t want remote users executing arbitrary 
programs with Web server’s privileges
• Especially if the Web server runs with root privileges
• Need to restrict which programs can be executed

CGI-BIN is the directory name which is always 
prepended to the name of the CGI script
• If CGI-BIN is /usr/local/httpd/cgi-bin, the above URL 

will execute /usr/local/httpd/cgi-bin/SomeProgram
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Exploiting Null HTTP Heap Overflow

Null HTTPD had a heap overflow vulnerability
• When corrupted buffer is freed, an overflown value is 

copied to a location whose address is read from an 
overflown memory area

• This enables attacker to copy an arbitrary value into a 
memory location of his choice

Standard exploit: copy address of attack code into 
the table containing addresses of library functions
• Transfers control to attacker’s code next time the library 

function is called

Alternative: overwrite the value of CGI-BIN
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Null HTTP CGI-BIN Exploit
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Another Web Server: GHTTPD

Check that URL doesn’t contain “/..”

Value at *ptr changes after it was checked 
but before it was used!   (This is a TOCTTOU attack)

Register containing pointer to URL
is pushed onto stack…

… overflown

… and read from stackAt this point, overflown *ptr may point
to a string containing “/..”
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SSH Authentication Code

Loop until one of 
the authentication
methods succeeds

detect_attack() prevents
checksum attack on SSH1…

…and also contains an
overflow bug which permits
the attacker to put any value
into any memory location

write 1 here

Break out of authentication
loop without authenticating
properly
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Reducing Lifetime of Critical Data

Reset flag here, right before
doing the checks
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Two’s Complement

Binary representation of negative integers
Represent X (where X<0) as 2N-|X|

N is word size (e.g., 32 bits on x86 architecture)

0 0 0 0 … 0 1

0 1 1 1 … 1 1

1 1 1 1 … 1 1

1 1 1 1 … 1 0

1 0 0 0 … 0 0

1

231-1

-1

-2

-231

231 ??
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Integer Overflow

static int getpeername1(p, uap, compat) {
// In FreeBSD kernel, retrieves address of peer to which a socket is connected

…
struct sockaddr *sa;
…

len = MIN(len, sa->sa_len);
… copyout(sa, (caddr_t)uap->asa, (u_int)len);
…

}

Checks that “len” is not too big

Copies “len” bytes from 
kernel memory to user space

Negative “len” will always pass this check…

… interpreted as a huge
unsigned integer here

… will copy up to 4G of 
kernel memory
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ActionScript Exploit

ActionScript 3 is a scripting language for Flash
• Basically, JavaScript for Flash animations
• For performance, Flash 9 and higher compiles scripts 

into bytecode for ActionScript Virtual Machine (AVM2)

Flash plugins are installed on millions of 
browsers, thus a perfect target for attack
• Different Flash binaries are used for Internet Explorer 

and Firefox, but this turns out not to matter

Exploit published in April 2008

[Dowd]



call   SWF_GetEncodedInteger ; Scene Count
mov  edi, [ebp+arg_0]
mov  [esi+4], eax
mov  ecx, [ebx+8]
sub   ecx, [ebx+4]
cmp   eax, ecx
jg      loc_30087BB4
…
push  eax
call    mem_Calloc

Processing SWF Scene Records (1)

How much memory is neded to store scenes

Code that allocates memory
for scene records:

Total size of the buffer
Offset into the buffer
Is there enough memory in the buffer?
(signed comparison)

What if scene count is negative?

Tell mem_Calloc how many bytes to allocate
Interprets its argument as unsigned integer

Supplied as part of SWF file from 
potentially malicious website

mem_Calloc fails (why?) and 
returns NULL slide 20



Processing SWF Scene Records (2)

Scene records are copied as follows:
• Start with pointer P returned by allocator
• Loop through and copy scenes until count ≤ 0
• Copy frame count into P + offset, where offset is 

determined by scene count
– Frame count also comes from the SWF file
– It is a “short” (16-bit) value, but written as a 32-bit DWORD

Attacker gains the ability to write one value into 
any location in memory (why?)
• … subject to some restrictions (see paper)
• But this is not enough to hijack control directly (why?)

slide 21



slide 22

ActionScript Virtual Machine (AVM2)

Register-based VM
• Bytecode instructions write and read from “registers”

“Registers”, operand stack, scope stack allocated 
on the same runtime stack as used by Flash itself
• “Registers” are mapped to locations on the stack and 

accessed by index (converted into memory offset)
• This is potentially dangerous (why?)

Malicious Flash script could hijack browser’s host
• Malicious bytecode can write into any location on the 

stack by supplying a fake register index
• This would be enough to take control (how?)
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AVM2 Verifier

ActionScript code is verified before execution
All bytecodes must be valid
• Throw an exception if encountering an invalid bytecode

All register accesses correspond to valid locations 
on the stack to which registers are mapped
For every instruction, calculate the number of 
operands, ensure that operands of correct type 
will be on the stack when it is executed
All values are stored with correct type information
• Encoded in bottom 3 bits



Relevant Verifier Code

…
if(AS3_argmask[opCode] == 0xFF) {

… throw exception … 
}
…
opcode_getArgs(…)
…

void opcode_getArgs(…) {
DWORD mask=AS3_argmask[opCode];
…
if(mask <=0) { … return … }
… *arg_dword1 = SWF_GetEncodedInteger(&ptr);
if(mask>1) *arg_dword2 = SWF_GetEncodedInteger(&ptr);

} 

Invalid bytecode

Determine operands

Number of operands for each opcode 
is defined in AS3_argmask array

slide 24
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Executing Invalid Opcodes

If interpreter encounters an invalid opcode, it 
silently skips it and continues executing
• Doesn’t really matter because this can’t happen

– Famous last words…

• AS3 code is executed only after it has been verified, 
and verifier throws an exception on invalid bytecode

But if we could somehow trick the verifier…
• Bytes after the opcode are treated as data (operands) 

by the verifier, but as executable code by interpreter
• This is an example of a TOCTTOU (time-of-check-to-

time-of-use) vulnerability
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Breaking AVM2 Verifier
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Breaking AVM2 Verifier

Pick an invalid opcode
Use the ability to write into arbitrary memory to 
change the AS3_argmask of that opcode from 
0xFF to something else
AVM2 verifier will treat it as normal opcode and 
skip subsequent bytes as operands
• How many? This is also determined by AS3_argmask!

AVM2 interpreter, however, will skip the invalid 
opcode and execute those bytes
You can now execute unverified ActionScript code
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Further Complications

Can execute only a few unverified bytecodes at a 
time (why?)
• Use multiple “marker” opcodes with overwritten masks

Cannot directly overwrite saved EIP on the 
evaluation stack with the address of shellcode 
because 3 bits are clobbered by type information
• Stack contains a pointer to current bytecode (codePtr)
• Move it from one “register” to another, overwrite EIP
• Bytecode stream pointed to by codePtr should contain 

a jump to the actual shellcode

Read the paper



Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection
• Put malicious code at a predictable location in 

memory, usually masquerading as data
• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Idea: prevent execution of untrusted code
• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., ActionScript)

• Digitally sign all code
• Ensure that all control transfers are into a trusted, 

approved code image
slide 29



W⊕X / DEP

Mark all writeable memory locations as non-
executable
• Example: Microsoft’s DEP (Data Execution Prevention)
• This blocks all code injection exploits

Hardware support
• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
• Makes memory page non-executable

Widely deployed
• Windows (since XP SP2), Linux (via PaX patches), 

OpenBSD, OS X (since 10.5)
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What Does W⊕X Not Prevent?

Can still corrupt stack …
• … or function pointers or critical data on the heap, but 

that’s not important right now

As long as “saved EIP” points into existing code, 
W⊕X protection will not block control transfer
This is the basis of return-to-libc exploits
• Overwrite saved EIP with address of any library 

routine, arrange memory to look like arguments

Does not look like a huge threat
• Attacker cannot execute arbitrary code
• … especially if system() is not available
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return-to-libc on Steroids

Overwritten saved EIP need not point to the 
beginning of a library routine
Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?
• Execution will be transferred… to where?
• Read the word pointed to by stack pointer (ESP)

– Guess what?  Its value is under attacker’s control!  (why?) 

• Use it as the new value for EIP
– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack
slide 32



Chaining RETs for Fun and Profit

Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the 

borrowed code chunks exploitation technique” (2005)

What is this good for?
Answer [Shacham et al.]: everything
• Turing-complete language
• Build “gadgets” for load-store, arithmetic,

logic, control flow, system calls
• Attack can perform arbitrary computation

using no injected code at all!
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[Shacham et al]



Ordinary Programming

Instruction pointer (EIP) determines which 
instruction to fetch and execute
Once processor has executed the instruction, it 
automatically increments EIP to next instruction
Control flow by changing value of EIP

slide 34



Return-Oriented Programming

Stack pointer (ESP) determines which instruction 
sequence to fetch and execute
Processor doesn’t automatically increment ESP
• But the RET at end of each instruction sequence does
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No-ops

No-op instruction does nothing but advance EIP
Return-oriented equivalent
• Point to return instruction
• Advances ESP

Useful in a NOP sled  (what’s that?)
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Immediate Constants

Instructions can encode constants
Return-oriented equivalent
• Store on the stack
• Pop into register to use
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Control Flow
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Ordinary programming
• (Conditionally) set EIP to new value

Return-oriented equivalent
• (Conditionally) set ESP to new value



Gadgets: Multi-instruction Sequences

Sometimes more than one instruction sequence 
needed to encode logical unit
Example: load from memory into register
• Load address of source word into EAX
• Load memory at (EAX) into EBX
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“The Gadget”: July 1945

slide 40



Gadget Design

Testbed: libc-2.3.5.so, Fedora Core 4
Gadgets built from found code sequences:
• Load-store, arithmetic & logic, control flow, syscalls

Found code sequences are challenging to use!
• Short; perform a small unit of work
• No standard function prologue/epilogue
• Haphazard interface, not an ABI
• Some convenient instructions not always available
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Conditional Jumps

cmp compares operands and sets a number of 
flags in the EFLAGS register
• Luckily, many other ops set EFLAGS as a side effect

jcc jumps when flags satisfy certain conditions
• But this causes a change in EIP… not useful (why?)

Need conditional change in stack pointer (ESP)
Strategy:
• Move flags to general-purpose register
• Compute either delta (if flag is 1) or 0 (if flag is 0)
• Perturb ESP by the computed delta
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Phase 1: Perform Comparison

neg calculates two’s complement
• As a side effect, sets carry flag (CF) 

if the argument is nonzero

Use this to test for equality
sub is similar, use to test if one 
number is greater than another
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Phase 2: Store 1-or-0 to Memory

slide 44

Clear ECX
EDX points to destination
adc adds up its operands & the carry flag;
result will be equal to the carry flag (why?)
Store result of adc into destination 



Two’s-complement 
negation:
0 becomes 0…0;
1 becomes 1…1

Bitwise AND with delta
(in ESI)
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Phase 3: Compute Delta-or-Zero



Phase 4: Perturb ESP by Delta
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Finding Instruction Sequences

Any instruction sequence ending in RET is useful
Algorithmic problem: recover all sequences of 
valid instructions from libc that end in a RET
At each RET (C3 byte), look back:
• Are preceding i bytes a valid instruction?
• Recur from found instructions

Collect instruction sequences in a trie

slide 47



ret}

Unintended Instructions
c7
45
d4
01
00
00
00
f7
c7
07
00
00
00
0f
95
45
c3

movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc %ebp}

}
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Actual code from ecb_crypt()



x86 Architecture Helps

Register-memory machine
• Plentiful opportunities for accessing memory

Register-starved
• Multiple sequences likely to operate on same register

Instructions are variable-length, unaligned
• More instruction sequences exist in libc
• Instruction types not issued by compiler may be 

available

Unstructured call/ret ABI
• Any sequence ending in a return is useful
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SPARC: the Un-x86

Load-store RISC machine
• Only a few special instructions access memory

Register-rich
• 128 registers; 32 available to any given function

All instructions 32 bits long; alignment enforced
• No unintended instructions

Highly structured calling convention
• Register windows
• Stack frames have specific format
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ROP on SPARC

Testbed: Solaris 10 libc (1.3 MB)
Use instruction sequences that are suffixes of real 
functions
Dataflow within a gadget
• Structured dataflow to dovetail with calling convention

Dataflow between gadgets
• Each gadget is memory-memory

Turing-complete computation!
Read paper for details
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