
slide 1

Vitaly Shmatikov

CS 380S

Runtime Defenses against
Memory Corruption

slide 2

Reading Assignment

Cowan et al. “Buffer overflows: Attacks and
defenses for the vulnerability of the decade”
(DISCEX 2000).
Avijit, Gupta, Gupta. “TIED, LibsafePlus:
Tools for Runtime Buffer Overflow
Protection” (Usenix Security 2004).
Dhurjati, Adve. “Backwards-compatible array
bounds checking for C with very low
overhead” (ICSE 2006).

slide 3

Preventing Buffer Overflows

Use safe programming languages, e.g., Java
• Legacy C code? Native-code library implementations?

Black-box testing with long strings
Mark stack as non-executable
Randomize memory layout or encrypt return
address on stack by XORing with random string
• Attacker won’t know what address to use in his string

Run-time checking of array and buffer bounds
• StackGuard, libsafe, many other tools

Static analysis of source code to find overflows

slide 4

Embed “canaries” (stack cookies) in stack frames
and verify their integrity prior to function return
• Any overflow of local variables will damage the canary

Choose random canary string on program start
• Attacker can’t guess what the value of canary will be

Terminator canary: “\0”, newline, linefeed, EOF
• String functions like strcpy won’t copy beyond “\0”

Run-Time Checking: StackGuard

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous
frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

StackGuard requires code recompilation
Checking canary integrity prior to every function
return causes a performance penalty
• For example, 8% for Apache Web server

StackGuard can be defeated
• A single memory copy where the attacker controls

both the source and the destination is sufficient

slide 5

Defeating StackGuard

Suppose program contains strcpy(dst,buf) where
attacker controls both dst and buf
• Example: dst is a local pointer variable

slide 6

buf sfp RET

Return execution to
this address

canarydst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy
BadPointer here

slide 7

ProPolice / SSP

Rerrange stack layout (requires compiler mod)

args

return address

SFP

CANARY

arrays

local variables

Stack
growth

No arrays or pointers

Ptrs, but no arrays

String
growth

Cannot overwrite any pointers
by overflowing an array

[IBM, used in gcc 3.4.1; also MS compilers]

exception handler records

slide 8

What Can Still Be Overwritten?

Other string buffers in the vulnerable function
Exception handling records
Any stack data in functions up the call stack
• Example: call to a vulnerable member function passes

as an argument this pointer to an object up the stack
• Stack overflow can overwrite this object’s vtable pointer

and make it point into an attacker-controlled area
• When a virtual function is called (how?), control is

transferred to attack code (why?)
• Do canaries help in this case?

– Hint: when is the integrity of the canary checked?

slide 9

Litchfield’s Attack

Microsoft Windows 2003 server implements
several defenses against stack overflow
• Random canary (with /GS option in the .NET compiler)
• When canary is damaged, exception handler is called
• Address of exception handler stored on stack above RET

Litchfield’s attack (see paper)
• Smashes the canary AND overwrites the pointer to the

exception handler with the address of the attack code
– Attack code must be on the heap and outside the module, or

else Windows won’t execute the fake “handler”

• Similar exploit used by CodeRed worm

Safe Exception Handling

Exception handler record must be on the stack of
the current thread (why?)
Must point outside the stack (why?)
Must point to a valid handler
• Microsoft’s /SafeSEH linker option: header of the binary

lists all valid handlers

Exception handler records must form a linked list,
terminating in FinalExceptionHandler
• Windows Server 2008: SEH chain validation
• Address of FinalExceptionHandler is randomized (why?)

slide 10

When SafeSEH Is Incomplete

If DEP is disabled, handler is allowed to be on
any non-image page except stack
• Put attack code on the heap, overwrite exception

handler record on the stack to point to it

If any module is linked without /SafeSEH,
handler is allowed to be anywhere in this module
• Overwrite exception handler record on the stack to

point to a suitable place in the module
• Used to exploit Microsoft DNS RPC vulnerability in

Windows Server 2003

slide 11

[Sotirov and Dowd]

slide 12

PointGuard

Attack: overflow a function pointer so that it
points to attack code
Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it

will dereference to a “random” memory address

slide 13

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

[Cowan]

slide 14

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
value

0x1234

2. Access data referenced by pointer

PointGuard Dereference

0x1234
Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer
value

0x9786
Decrypt

Decrypts to
random value

0x9786

[Cowan]

slide 15

PointGuard Issues

Must be very fast
• Pointer dereferences are very common

Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values

end up in memory and can be overwritten there

Attacker should not be able to modify the key
• Store key in its own non-writable memory page

PG’d code doesn’t mix well with normal code
• What if PG’d code needs to pass a pointer to OS kernel?

slide 16

Run-Time Checking: Libsafe

Dynamically loaded library
Intercepts calls to strcpy(dest,src)
• Checks if there is sufficient space in current

stack frame
|frame-pointer – dest| > strlen(src)

• If yes, does strcpy; else terminates application

destret-addrsfp
top
of

stack
src buf ret-addrsfp

libsafe main

Limitations of Libsafe

Protects frame pointer and return address from
being overwritten by a stack overflow
Does not prevent sensitive local variables below
the buffer from being overwritten
Does not prevent overflows on global and
dynamically allocated buffers

slide 17

TIED / LibsafePlus

TIED: augments the executable with size
information for global and automatic buffers
LibsafePlus: intercepts calls to unsafe C library
functions and performs more accurate and
extensive bounds checking

[Avijit et al.]

slide 18

Overall Approach

Run

Aborts if buffer
overflow

Normal
execution
otherwise

Executable
compiled with

-g option

Augmented
executableTIED

LibsafePlus.so
Preload

slide 19

TIED: The Binary Rewriter

Extracts type information from the executable
• Executable must be compiled with -g option

Determines location and size for automatic and
global character arrays
Organizes the information as tables and puts it
back into the binary as a loadable, read-only
section

slide 20

Starting address End address No. of vars Ptr to var table

No. of global variables

Ptr to global var table

No. of functions

Ptr to function table

Starting address Size

Offset from
frame pointer

Size

Type info header pointer
Global Variable Table

Function Table

Local Variable Table

Local Variable Table

Type Information Data Structure

slide 21

…

Rewriting ELF Executables

Constraint: the virtual addresses of existing
code and data should not change
Extend the executable towards lower virtual
addresses by a multiple of page size
Serialize, relocate, and dump type information
as a new loadable section in the gap created
Provide a pointer to the new section as a
symbol in the dynamic symbol table

slide 22

Before and After Rewriting

ELF Header

Program headers

.dynstr

.dynsym

.hash

Section header table

.dynamic

ELF Header

Program headers

.olddynstr

.olddynsym

.oldhash

.dynamic

Section header table

Data structure containing
type information

.dynsym (new)

.dynstr (new)

.hash (new).dynstr is modified
to hold the name of
the symbolic pointer

.hash is modified
to hold the hash
value of the symbol
added to .dynsym

slide 23

Bounds Checking by LibsafePlus

Intercept unsafe C library functions
• strcpy, memcpy, gets …

Determine the size of destination buffer
Determine the size of source string
If destination buffer is large enough, perform
the operation using actual C library function
Terminate the program otherwise

slide 24

Estimating Stack Buffer Size

Preliminary check: is the buffer address greater
than the current stack pointer?
Locate the encapsulating stack frame by
traversing the saved frame pointers
Find the function that defines the buffer
Search for the buffer in the local variable table
corresponding to the function
• This table has been added to the binary by TIED

Return the loose Libsafe bound if buffer is not
present in the local variable table

slide 25

Where Was The Buffer Defined?

slide 26

Case 1: buf may be local variable
of function f

or

Case 2: buf may be an argument to
the function g

Use return address into f to locate the
local variable table of f, search it for a
matching entry.

If no match is found, repeat the step
using return address into g.

buf

Saved %ebp
Ret address from f

Ret address into f

Ret address into g

strcpy()

f

g

strcpy

Ret address into g

Ret address into f

Protecting Heap Variables

LibsafePlus also provides protection for variables
allocated by malloc family of functions
Intercepts calls to malloc family of functions
Records sizes and addresses of all dynamically
allocated chunks in a red-black tree.
• Used to find sizes of dynamically allocated buffers

Insertion, deletion and searching in O(log(n))

slide 27

Estimating Heap Buffer Size

Maintain the smallest starting address M returned
by malloc family of functions
Preliminary check: if the buffer is not on the
stack, is its address greater than M?
If yes, search in the red-black tree to get the size
If buffer is neither on stack, nor on heap, search
in the global variable table of the type
information data structure

slide 28

Limitations of TIED / LibsafePlus

Does not handle overflows due to erroneous
pointer arithmetic
Imprecise bounds for automatic variable-sized
arrays and alloca()’ed buffers
Applications that mmap() to fixed addresses
may not work
Type information about buffers inside shared
libraries is not available
• Addressed in a later version

slide 29

slide 30

Runtime Bounds Checking

Referent object = buffer to which pointer points
• Actual size is available at runtime!

1. Modified pointer representation
• Pointer keeps information about its referent object
• Incompatible with external code, libraries, etc.

2. Special table maps pointers to referent objects
• Check referent object on every dereference
• What if a pointer is modified by external code?

3. Keep track of address range of each object
• For every pointer arithmetic operation, check that the

result points to the same referent object

slide 31

Jones-Kelly

Pad each object by 1 byte
• C permits a pointer to point to the byte right after an

allocated memory object

Maintain a runtime tree of allocated objects
Backwards-compatible pointer representation
Replace all out-of-bounds addresses with special
ILLEGAL value (if dereferenced, program crashes)
Problem: what if a pointer to an out-of-bounds
address is used to compute an in-bounds address
• Result: false alarm

[In Automated & Algorithmic Debugging, 1997]

slide 32

Example of a False Alarm

{
char *p, *q, *r, *s;
p = malloc(4);
q = p+1;
s = p+5;
r = s-3;

}

referent object (4 bytes)

out of bounds!
S is set to
ILLEGAL

Program will crash if
r is ever dereferenced Note: this code works even though

it’s technically illegal in standard C

slide 33

Ruwase-Lam

Catch out-of-bounds pointers at runtime
• Requires instrumentation of malloc() and a special

runtime environment

Instead of ILLEGAL, make each out-of-bounds
pointer point to a special OOB object
• Stores the original out-of-bounds value
• Stores a pointer to the original referent object

Pointer arithmetic on out-of-bounds pointers
• Simply use the actual value stored in the OOB object

If a pointer is dereferenced, check if it points to
an actual object. If not, halt the program!

slide 34

Example of an OOB Object

{
char *p, *q, *r, *s;
p = malloc(4);
q = p+1;
s = p+5;
r = s-3;

}

referent object (4 bytes)

Value of r is
in bounds Note: this code works even though

it’s technically illegal in standard C

OOB object

slide 35

Performance

Checking the referent object table on every
pointer arithmetic operation is very expensive
Jones-Kelly: 5x-6x slowdown
• Tree of allocated objects grows very big

Ruwase-Lam: 11x-12x slowdown if enforcing
bounds on all objects, up to 2x if only strings
Unusable in production code!

slide 36

Dhurjati-Adve

Split memory into disjoint pools
• Use aliasing information
• Target pool for each pointer known at compile-time
• Can check if allocation contains a single element (why

does this help?)

Separate tree of allocated objects for each pool
• Smaller tree ⇒ much faster lookup; also caching

Instead of returning a pointer to an OOB, return
an address from the kernel address space
• Separate table maps this address to the OOB
• Don’t need checks on every dereference (why?)

q = OOB(p+20,p)
Put OOB(p+20,p) into a map

p = malloc(10 * sizeof(int));
q = p + 20;

r = q – 15;

*r = … ; //no bounds overflow

*q = … ; // overflow

r = p + 5

Check if q is out of bounds:

Runtime error

Check if r is out of bounds

OOB Pointers: Ruwase-Lam

slide 37

Check on every dereference

q = 0xCCCCCCCC
Put (0xCCCCCCCC, OOB(p+20,p))

into a map

p = malloc(10 * sizeof(int));
q = p + 20;

r = q – 15;

*r = … ; //no bounds overflow

*q = … ; // overflow

r = p + 5

No software check necessary!

Runtime error

No software check necessary!

OOB Pointers: Dhurjati-Adve

slide 38

Average overhead: 12% on a set of benchmarks

	Runtime Defenses against�Memory Corruption
	Reading Assignment
	Preventing Buffer Overflows
	Run-Time Checking: StackGuard
	StackGuard Implementation
	Defeating StackGuard
	ProPolice / SSP
	What Can Still Be Overwritten?
	Litchfield’s Attack
	Safe Exception Handling
	When SafeSEH Is Incomplete
	PointGuard
	Normal Pointer Dereference
	PointGuard Dereference	
	PointGuard Issues
	Run-Time Checking: Libsafe
	Limitations of Libsafe
	TIED / LibsafePlus
	Overall Approach
	TIED: The Binary Rewriter
	Type Information Data Structure
	Rewriting ELF Executables
	Before and After Rewriting
	Bounds Checking by LibsafePlus
	Estimating Stack Buffer Size
	Where Was The Buffer Defined?
	Protecting Heap Variables
	Estimating Heap Buffer Size
	Limitations of TIED / LibsafePlus
	Runtime Bounds Checking
	Jones-Kelly
	Example of a False Alarm
	Ruwase-Lam
	Example of an OOB Object
	Performance
	Dhurjati-Adve
	OOB Pointers: Ruwase-Lam
	OOB Pointers: Dhurjati-Adve

