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Reading Assignment

Cowan et al. “Buffer overflows: Attacks and 
defenses for the vulnerability of the decade” 
(DISCEX 2000).
Avijit, Gupta, Gupta. “TIED, LibsafePlus: 
Tools for Runtime Buffer Overflow 
Protection” (Usenix Security 2004).
Dhurjati, Adve. “Backwards-compatible array 
bounds checking for C with very low 
overhead” (ICSE 2006).



slide 3

Preventing Buffer Overflows

Use safe programming languages, e.g., Java
• Legacy C code?  Native-code library implementations?

Black-box testing with long strings
Mark stack as non-executable
Randomize memory layout or encrypt return 
address on stack by XORing with random string
• Attacker won’t know what address to use in his string

Run-time checking of array and buffer bounds
• StackGuard, libsafe, many other tools

Static analysis of source code to find overflows
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Embed “canaries” (stack cookies) in stack frames 
and verify their integrity prior to function return
• Any overflow of local variables will damage the canary

Choose random canary string on program start
• Attacker can’t guess what the value of canary will be

Terminator canary: “\0”, newline, linefeed, EOF
• String functions like strcpy won’t copy beyond “\0”

Run-Time Checking: StackGuard

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous
frame

Frame of the
calling function

Return
execution to
this address

canary



StackGuard Implementation

StackGuard requires code recompilation
Checking canary integrity prior to every function 
return causes a performance penalty
• For example, 8% for Apache Web server

StackGuard can be defeated
• A single memory copy where the attacker controls 

both the source and the destination is sufficient
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Defeating StackGuard

Suppose program contains strcpy(dst,buf) where 
attacker controls both dst and buf
• Example: dst is a local pointer variable
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buf sfp RET

Return execution to
this address

canarydst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy 
BadPointer here
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ProPolice / SSP

Rerrange stack layout (requires compiler mod)

args

return address

SFP

CANARY

arrays

local variables

Stack
growth

No arrays or pointers

Ptrs, but no arrays

String
growth

Cannot overwrite any pointers
by overflowing an array

[IBM, used in gcc 3.4.1; also MS compilers]

exception handler records
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What Can Still Be Overwritten?

Other string buffers in the vulnerable function
Exception handling records
Any stack data in functions up the call stack
• Example: call to a vulnerable member function passes 

as an argument this pointer to an object up the stack
• Stack overflow can overwrite this object’s vtable pointer 

and make it point into an attacker-controlled area
• When a virtual function is called (how?), control is 

transferred to attack code (why?)
• Do canaries help in this case? 

– Hint: when is the integrity of the canary checked?
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Litchfield’s Attack

Microsoft Windows 2003 server implements 
several defenses against stack overflow
• Random canary (with /GS option in the .NET compiler)
• When canary is damaged, exception handler is called
• Address of exception handler stored on stack above RET

Litchfield’s attack (see paper)
• Smashes the canary AND overwrites the pointer to the 

exception handler with the address of the attack code
– Attack code must be on the heap and outside the module, or 

else Windows won’t execute the fake “handler”

• Similar exploit used by CodeRed worm



Safe Exception Handling

Exception handler record must be on the stack of 
the current thread (why?)  
Must point outside the stack (why?) 
Must point to a valid handler
• Microsoft’s /SafeSEH linker option: header of the binary 

lists all valid handlers

Exception handler records must form a linked list, 
terminating in FinalExceptionHandler
• Windows Server 2008: SEH chain validation
• Address of FinalExceptionHandler is randomized (why?)
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When SafeSEH Is Incomplete

If DEP is disabled, handler is allowed to be on 
any non-image page except stack
• Put attack code on the heap, overwrite exception 

handler record on the stack to point to it

If any module is linked without /SafeSEH, 
handler is allowed to be anywhere in this module
• Overwrite exception handler record on the stack to 

point to a suitable place in the module
• Used to exploit Microsoft DNS RPC vulnerability in 

Windows Server 2003
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PointGuard

Attack: overflow a function pointer so that it 
points to attack code
Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from 

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it 

will dereference to a “random” memory address
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CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

[Cowan]
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CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer 
value

0x1234

2. Access data referenced by pointer

PointGuard Dereference

0x1234
Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer 
value

0x9786
Decrypt

Decrypts to
random value

0x9786

[Cowan]
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PointGuard Issues

Must be very fast
• Pointer dereferences are very common

Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values 

end up in memory and can be overwritten there

Attacker should not be able to modify the key
• Store key in its own non-writable memory page

PG’d code doesn’t mix well with normal code
• What if PG’d code needs to pass a pointer to OS kernel?
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Run-Time Checking: Libsafe

Dynamically loaded library
Intercepts calls to strcpy(dest,src)
• Checks if there is sufficient space in current 

stack frame
|frame-pointer – dest| > strlen(src)

• If yes, does strcpy; else terminates application  

destret-addrsfp
top
of

stack
src buf ret-addrsfp

libsafe main



Limitations of Libsafe

Protects frame pointer and return address from 
being overwritten by a stack overflow
Does not prevent sensitive local variables below 
the buffer from being overwritten
Does not prevent overflows on global and 
dynamically allocated buffers
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TIED / LibsafePlus

TIED: augments the executable with size 
information for global and automatic buffers
LibsafePlus: intercepts calls to unsafe C library 
functions and performs more accurate and 
extensive bounds checking

[Avijit et al.]
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Overall Approach

Run

Aborts if buffer
overflow

Normal 
execution
otherwise

Executable
compiled with

-g option

Augmented
executableTIED

LibsafePlus.so
Preload
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TIED: The Binary Rewriter

Extracts type information from the executable
• Executable must be compiled with -g option

Determines location and size for automatic and 
global character arrays
Organizes the information as tables and puts it 
back into the binary as a loadable, read-only 
section
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Starting address End address No. of vars Ptr to var table

No. of global variables

Ptr to global var table

No. of functions

Ptr to function table

Starting address Size

Offset from
frame pointer

Size

Type info header pointer
Global Variable Table

Function Table

Local Variable Table

Local Variable Table

Type Information Data Structure
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Rewriting ELF Executables

Constraint: the virtual addresses of existing 
code and data should not change
Extend the executable towards lower virtual 
addresses by a multiple of page size
Serialize, relocate, and dump type information 
as a new loadable section in the gap created
Provide a pointer to the new section as a 
symbol in the dynamic symbol table
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Before and After Rewriting

ELF Header

Program headers

.dynstr

.dynsym

.hash

Section header table

.dynamic

ELF Header

Program headers

.olddynstr

.olddynsym

.oldhash

.dynamic

Section header table

Data structure containing
type information

.dynsym ( new )

.dynstr ( new )

.hash ( new ).dynstr is modified
to hold the name of 
the symbolic pointer

.hash is modified
to hold the hash 
value of the symbol
added to .dynsym
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Bounds Checking by LibsafePlus

Intercept unsafe C library functions
• strcpy, memcpy, gets …

Determine the size of destination buffer
Determine the size of source string
If destination buffer is large enough, perform 
the operation using actual C library function
Terminate the program otherwise
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Estimating Stack Buffer Size

Preliminary check: is the buffer address greater 
than the current stack pointer?
Locate the encapsulating stack frame by 
traversing the saved frame pointers
Find the function that defines the buffer
Search for the buffer in the local variable table 
corresponding to the function
• This table has been added to the binary by TIED

Return the loose Libsafe bound if buffer is not 
present in the local variable table
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Where Was The Buffer Defined?
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Case 1: buf may be local variable 
of function f

or

Case 2: buf may be an argument to 
the function g

Use return address into f to locate the 
local variable table of f, search it for a 
matching entry.

If no match is found, repeat the step 
using return address into g.

buf

Saved %ebp
Ret address from f

Ret address into f

Ret address into g

strcpy()

f

g

strcpy

Ret address into g

Ret address into f



Protecting Heap Variables

LibsafePlus also provides protection for variables 
allocated by malloc family of functions
Intercepts calls to malloc family of functions
Records sizes and addresses of all dynamically 
allocated chunks in a red-black tree.
• Used to find sizes of dynamically allocated buffers

Insertion, deletion and searching in O(log(n))
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Estimating Heap Buffer Size

Maintain the smallest starting address M returned 
by malloc family of functions
Preliminary check: if the buffer is not on the 
stack, is its address greater than M?
If yes, search in the red-black tree to get the size
If buffer is neither on stack, nor on heap, search 
in the global variable table of the type 
information data structure
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Limitations of TIED / LibsafePlus

Does not handle overflows due to erroneous 
pointer arithmetic
Imprecise bounds for automatic variable-sized 
arrays and alloca()’ed buffers
Applications that mmap() to fixed addresses 
may not work
Type information about buffers inside shared 
libraries is not available
• Addressed in a later version
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Runtime Bounds Checking

Referent object = buffer to which pointer points
• Actual size is available at runtime!

1. Modified pointer representation
• Pointer keeps information about its referent object
• Incompatible with external code, libraries, etc. 

2. Special table maps pointers to referent objects
• Check referent object on every dereference
• What if a pointer is modified by external code?

3. Keep track of address range of each object
• For every pointer arithmetic operation, check that the 

result points to the same referent object
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Jones-Kelly

Pad each object by 1 byte
• C permits a pointer to point to the byte right after an 

allocated memory object

Maintain a runtime tree of allocated objects
Backwards-compatible pointer representation
Replace all out-of-bounds addresses with special 
ILLEGAL value (if dereferenced, program crashes)
Problem: what if a pointer to an out-of-bounds 
address is used to compute an in-bounds address
• Result: false alarm

[In Automated & Algorithmic Debugging, 1997]
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Example of a False Alarm

{
char *p, *q, *r, *s;
p = malloc(4);
q = p+1;
s = p+5;
r = s-3;

}

referent object (4 bytes)

out of bounds!
S is set to 
ILLEGAL

Program will crash if 
r is ever dereferenced Note: this code works even though

it’s technically illegal in standard C
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Ruwase-Lam

Catch out-of-bounds pointers at runtime
• Requires instrumentation of malloc() and a special 

runtime environment

Instead of ILLEGAL, make each out-of-bounds 
pointer point to a special OOB object
• Stores the original out-of-bounds value
• Stores a pointer to the original referent object

Pointer arithmetic on out-of-bounds pointers
• Simply use the actual value stored in the OOB object

If a pointer is dereferenced, check if it points to 
an actual object. If not, halt the program!



slide 34

Example of an OOB Object

{
char *p, *q, *r, *s;
p = malloc(4);
q = p+1;
s = p+5;
r = s-3;

}

referent object (4 bytes)

Value of r is 
in bounds Note: this code works even though

it’s technically illegal in standard C

OOB object
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Performance

Checking the referent object table on every 
pointer arithmetic operation is very expensive
Jones-Kelly: 5x-6x slowdown
• Tree of allocated objects grows very big

Ruwase-Lam: 11x-12x slowdown if enforcing 
bounds on all objects, up to 2x if only strings
Unusable in production code!
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Dhurjati-Adve

Split memory into disjoint pools
• Use aliasing information
• Target pool for each pointer known at compile-time
• Can check if allocation contains a single element (why 

does this help?)

Separate tree of allocated objects for each pool
• Smaller tree ⇒ much faster lookup; also caching

Instead of returning a pointer to an OOB, return 
an address from the kernel address space
• Separate table maps this address to the OOB
• Don’t need checks on every dereference (why?)



q  = OOB(p+20,p)
Put OOB(p+20,p) into a map

p = malloc(10 * sizeof(int));
q = p + 20;

r =  q – 15;

*r = …  ; //no bounds overflow

*q = … ; // overflow

r = p + 5

Check if q is out of bounds: 

Runtime error

Check if r is out of bounds

OOB Pointers: Ruwase-Lam
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Check on every dereference



q  = 0xCCCCCCCC
Put (0xCCCCCCCC, OOB(p+20,p)) 

into a map

p = malloc(10 * sizeof(int));
q = p + 20;

r =  q – 15;

*r = …  ; //no bounds overflow

*q = … ; // overflow

r = p + 5

No software check necessary!

Runtime error

No software check necessary!

OOB Pointers: Dhurjati-Adve
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Average overhead: 12% on a set of benchmarks
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