
slide 1

Vitaly Shmatikov

CS 380S

Address Space Layout
Randomization

slide 2

Reading Assignment

Shacham et al. “On the effectiveness of address-
space randomization” (CCS 2004).
Optional:
• PaX documentation (http://pax.grsecurity.net/docs/)
• Bhatkar, Sekar, DuVarney. “Efficient techniques for

comprehensive protection from memory error
exploits” (Usenix Security 2005).

slide 3

Problem: Lack of Diversity

Buffer overflow and return-to-libc exploits need to
know the (virtual) address to hijack control
• Address of attack code in the buffer
• Address of a standard kernel library routine

Same address is used on many machines
• Slammer infected 75,000 MS-SQL servers using same

code on every machine

Idea: introduce artificial diversity
• Make stack addresses, addresses of library routines, etc.

unpredictable and different from machine to machine

slide 4

ASLR

Address Space Layout Randomization
Randomly choose base address of stack, heap,
code segment
Randomly pad stack frames and malloc() calls
Randomize location of Global Offset Table
Randomization can be done at compile- or link-
time, or by rewriting existing binaries
• Threat: attack repeatedly probes randomized binary

slide 5

PaX

Linux kernel patch
Goal: prevent execution of arbitrary code in an
existing process’s memory space
Enable executable/non-executable memory pages
Any section not marked as executable in ELF
binary is non-executable by default
• Stack, heap, anonymous memory regions

Access control in mmap(), mprotect() prevents
unsafe changes to protection state at runtime
Randomize address space layout

slide 6

Non-Executable Pages in PaX

In older x86, pages cannot be directly marked
as non-executable
PaX marks each page as “non-present” or
“supervisor level access”
• This raises a page fault on every access

Page fault handler determines if the fault
occurred on a data access or instruction fetch
• Instruction fetch: log and terminate process
• Data access: unprotect temporarily and continue

slide 7

mprotect() in PaX

mprotect() is a Linux kernel routine for
specifying desired protections for memory pages
PaX modifies mprotect() to prevent:
• Creation of executable anonymous memory mappings
• Creation of executable and writable file mappings
• Making executable, read-only file mapping writable

– Except when relocating the binary

• Conversion of non-executable mapping to executable

slide 8

Access Control in PaX mprotect()

In standard Linux kernel, each memory mapping
is associated with permission bits
• VM_WRITE, VM_EXEC, VM_MAYWRITE, VM_MAYEXEC

– Stored in the vm_flags field of the vma kernel data structure
– 16 possible write/execute states for each memory page

PaX makes sure that the same page cannot be
writable AND executable at the same time
• Ensures that the page is in one of the 4 “good” states

– VM_MAYWRITE, VM_MAYEXEC, VM_WRITE | VM_MAYWRITE,
VM_EXEC | VM_MAYEXEC

• Also need to ensure that attacker cannot make a region
executable when mapping it using mmap()

slide 9

PaX ASLR

User address space consists of three areas
• Executable, mapped, stack

Base of each area shifted by a random “delta”
• Executable: 16-bit random shift (on x86)

– Program code, uninitialized data, initialized data

• Mapped: 16-bit random shift
– Heap, dynamic libraries, thread stacks, shared memory
– Why are only 16 bits of randomness used?

• Stack: 24-bit random shift
– Main user stack

slide 10

PaX RANDUSTACK

Responsible for randomizing userspace stack
Userspace stack is created by the kernel upon
each execve() system call
• Allocates appropriate number of pages
• Maps pages to process’s virtual address space

– Userspace stack is usually mapped at 0xBFFFFFFF, but PaX
chooses a random base address

In addition to base address, PaX randomizes the
range of allocated memory

slide 11

PaX RANDKSTACK

Linux assigns two pages of kernel memory for
each process to be used during the execution of
system calls, interrupts, and exceptions
PaX randomizes each process’s kernel stack
pointer before returning from kernel to userspace
• 5 bits of randomness

Each system call is randomized differently
• By contrast, user stack is randomized once when the

user process is invoked for the first time

slide 12

PaX RANDMMAP

Linux heap allocation: do_mmap() starts at the
base of the process’s unmapped memory and
looks for the first unallocated chunk which is
large enough
PaX: add a random delta_mmap to the base
address before looking for new memory
• 16 bits of randomness

slide 13

PaX RANDEXEC

Randomizes location of ELF binaries in memory
Problem if the binary was created by a linker
which assumed that it will be loaded at a fixed
address and omitted relocation information
• PaX maps the binary to its normal location, but

makes it non-executable + creates an executable
mirror copy at a random location

• Access to the normal location produces a page fault
• Page handler redirects to the mirror “if safe”

– Looks for “signatures” of return-to-libc attacks and may
result in false positives

slide 14

Base-Address Randomization

Only the base address is randomized
• Layouts of stack and library table remain the same
• Relative distances between memory objects are not

changed by base address randomization

To attack, it’s enough to guess the base shift
A 16-bit value can be guessed by brute force
• Try 215 (on average) overflows with different values for

addr of known library function – how long does it take?
– Shacham et al. attacked Apache with return-to-libc
– usleep() is used (why?)

• If address is wrong, target will simply crash

ASLR in Windows

Vista and Server 2008
Stack randomization
• Find Nth hole of suitable size (N is a 5-bit random value),

then random word-aligned offset (9 bits of randomness)

Heap randomization: 5 bits
• Linear search for base + random 64K-aligned offset

EXE randomization: 8 bits
• Preferred base + random 64K-aligned offset

DLL randomization: 8 bits
• Random offset in DLL area; random loading order

slide 15

Bypassing Windows ASLR

Implementation uses randomness improperly,
thus distribution of heap bases is biased
• Ollie Whitehouse’s paper (Black Hat 2007)
• Makes guessing a valid heap address easier

When attacking browsers, may be able to insert
arbitrary objects into the victim’s heap
• Executable JavaScript code, plugins, Flash, Java

applets, ActiveX and .NET controls…

Heap spraying
• Stuff heap with large objects and multiple copies of

attack code (how does this work?)
slide 16

Example: Java Heap Spraying

JVM makes all of its allocated memory RWX:
readable, writeable, executable (why?)
• Yay! DEP now goes out the window…

100MB applet heap, randomized base in a
predictable range
• 0x20000000 through 0x25000000

Use a Java applet to fill the heap with (almost)
100MB of NOP sleds + attack code
Use your favorite memory exploit to transfer
control to 0x25A00000 (why does this work?)

slide 17

[See Sotirov & Dowd]

Information Leaks Break ASLR

User-controlled .NET objects are not RWX
But JIT compiler generates code in RWX memory
• Can overwrite this code or “return” to it out of context
• But ASLR hides location of generated code stubs…
• Call MethodHandle.GetFunctionPointer() … .NET itself

will tell you where the generated code lives!

ASLR is often defeated by information leaks
• Pointer betrays an object’s location in memory

– For example, a pointer to a static variable reveals DLL’s
location… for all processes on the system! (why?)

• Pointer to a frame object betrays the entire stack
slide 18

[See Sotirov & Dowd]

.NET Address Space Spraying

Webpage may embed .NET DLLs
• No native code, only IL bytecode
• Run in sandbox, thus no user warning (unlike ActiveX)
• Mandatory base randomization when loaded

Attack webpage include a large (>100MB) DLL

slide 19

[See Sotirov & Dowd]

Dealing with Large Attack DLLs

100MB is a lot for the victim to download!
Solution 1: binary padding
• Specify a section with a very large VirtualSize and very

small SizeOfRawData – will be 0-padded when mapped
• On x86, equivalent to add byte ptr [eax], al - NOP sled!

– Only works if EAX points to a valid, writeable address

Solution 2: compression
• gzip content encoding

– Great compression ratio, since content is mostly NOPs

• Browser will unzip on the fly

slide 20

[See Sotirov & Dowd]

Spraying with Small DLLs

Attack webpage includes many small DLL binaries
Large chunk of address space will be sprayed with
attack code

slide 21

[See Sotirov & Dowd]

Turning Off ASLR Entirely

Any DLL may “opt out” of ASLR
• Choose your own ImageBase, unset

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE flag

Unfortunately, ASLR is enforced on IL-only DLL
How does the loader know a binary is IL-only?

slide 22

[See Sotirov & Dowd]

if(((pCORHeader->MajorRuntimeVersion > 2) ||
(pCORHeader->MajorRuntimeVersion == 2 && pCORHeader->MinorRuntimeVersion >= 5)) &&

(pCORHeader->Flags & COMIMAGE_FLAGS_ILONLY))
{
pImageControlArea->pBinaryInfo->pHeaderInfo->bFlags |= PINFO_IL_ONLY_IMAGE;
...
} Set version in the header to anything below 2.5

ASLR will be disabled for this binary!

Bypassing IL Protections

Embedded .NET DLLs are expected to contain IL
bytecode only - many protection features
• Verified prior to JIT compilation and at runtime, DEP
• Makes it difficult to write effective shellcode

… enabled by a single global variable
• mscorwks!s_eSecurityState must be set to 0 or 2
• Does mscorwks participate in ASLR?

Similar: disable Java bytecode verification
• JVM does not participate in ASLR, either
• To disable runtime verification, traverse the stack and

set NULL protection domain for current method
slide 23

[Dowd & Sotirov, PacSec 2008]

No!

slide 24

Ideas for Better Randomization (1)

64-bit addresses
• At least 40 bits available for randomization

– Memory pages are usually between 4K and 4M in size

• Brute-force attack on 40 bits is not feasible

Does more frequent randomization help?
• ASLR randomizes when a process is created
• Alternative: re-randomize address space while brute-

force attack is still in progress
– E.g., re-randomize non-forking process after each crash (recall

that unsuccessful guesses result in target’s crashing)

• This does not help much (why?)

slide 25

Ideas for Better Randomization (2)

Randomly re-order entry points of library functions
• Finding address of one function is no longer enough to

compute addresses of other functions
– What if attacker finds address of system()?

… at compile-time
• Access to source, thus no virtual memory constraints;

can use more randomness (any disadvantages?)

… or at run-time
• How are library functions shared among processes?
• How does normal code find library functions?

Comprehensive Randomization (1)

Function calls
• Convert all functions to function pointers and store

them in an array
• Reorder functions within the binary
• Allocation order of arguments is randomized for each

function call

Indirect access to all static variables
• Accessed only via pointers stored in read-only memory
• Addresses chosen randomly at execution start

slide 26

[Bhatkar et al.]

slide 27

Locations of stack-allocated objects randomized
continuously during execution
• Separate shadow stack for arrays
• Each array surrounded by inaccessible memory regions

Insert random stack gap when a function is called
• Can be done right before a function is called, or at the

beginning of the called function (what’s the difference?)
Randomize heap-allocated objects
• Intercepts malloc() calls and requests random amount

of additional space

Comprehensive Randomization (2)
[Bhatkar et al.]

slide 28

Comprehensive Randomization (3)

Randomize base of stack at program start
Shared DLLs (see any immediate issues?)
Procedure Linkage Table/Global Offset Table
setjmp/longjmp require special handling
• Must keep track of context (e.g., shadow stack location)

[Bhatkar et al.]

slide 29

Summary

Randomness is a potential defense mechanism
Many issues for proper implementation
Serious limitations on 32-bit architecture
• "Thus, on 32-bit systems, runtime randomization

cannot provide more than 16-20 bits of entropy"
– Shacham et al.

	Address Space Layout Randomization
	Reading Assignment
	Problem: Lack of Diversity
	ASLR
	PaX
	Non-Executable Pages in PaX
	mprotect() in PaX
	Access Control in PaX mprotect()
	PaX ASLR
	PaX RANDUSTACK
	PaX RANDKSTACK
	PaX RANDMMAP
	PaX RANDEXEC
	Base-Address Randomization
	ASLR in Windows
	Bypassing Windows ASLR
	Example: Java Heap Spraying
	Information Leaks Break ASLR
	.NET Address Space Spraying
	Dealing with Large Attack DLLs
	Spraying with Small DLLs
	Turning Off ASLR Entirely
	Bypassing IL Protections
	Ideas for Better Randomization (1)
	Ideas for Better Randomization (2)
	Comprehensive Randomization (1)
	Comprehensive Randomization (2)
	Comprehensive Randomization (3)
	Summary

