
slide 1

Vitaly Shmatikov

CS 380S

Static Defenses against
Memory Corruption

slide 2

Reading Assignment

�Wagner et al. “A first step towards
automated detection of buffer overrun
vulnerabilities” (NDSS 2000).

�Ganapathy et al. “Buffer overrun detection
using linear programming and static analysis”
(CCS 2003).

�Dor, Rodeh, Sagiv. “CSSV: Towards a
realistic tool for statically detecting all buffer
overflows in C” (PLDI 2003).

slide 3

Static Analysis

�Goal: catch buffer overflow bugs by analyzing
the source code of the program
• Typically at compile-time, but also binary analysis

�Static analysis is necessarily imprecise
• Soundness: finds all instances of buffer overflow

– Problem: false positives (good code erroneously flagged)

• Completeness: every reported problem is indeed an
instance of buffer overflow

– Problem: false negatives (misses some buffer overflows)

• No technique is both sound and complete (why?)
• Maybe don’t need either…

slide 4

Static vs. Dynamic

�Both static and dynamic approaches have their
advantages and disadvantages (what are they?)

�Hybrid approaches (example: CCured)
• Try to verify absence of memory errors statically, then

insert runtime checks where static verification failed

�Performance and usability are always important
• Does source code need to be modified?
• Does source code need to be recompiled?
• How is backward compatibility (if any) achieved?

– Rewriting binaries vs. special runtime environment

slide 5

BOON

�Treat C strings as abstract data types
• Assume that C strings are accessed only through

library functions: strcpy, strcat, etc.
• Pointer arithmetic is greatly simplified

(what does this imply for soundness?)

�Characterize each buffer by its allocated size and
current length (number of bytes in use)

�For each of these values, statically determine
acceptable range at each point of the program
• Done at compile-time, thus necessarily conservative

(what does this imply for completeness?)

[Wagner et al.]

slide 6

�Let s be some string variable used in the program
�len(s) is the set of possible lengths

• Why is len(s) not a single integer, but a set?

�alloc(s) is the set of possible values for the
number of bytes allocated for s
• Is it possible to compute len(s) and alloc(s) precisely

at compile-time?

�At each point in program execution, want

len(s) ≤ alloc(s)

Safety Condition

slide 7

Integer Constraints

�Every string operation is associated with a
constraint describing its effects

strcpy(dst,src)
strncpy(dst,src,n)
gets(s)
s=“Hello!”
s[n]=‘\0’

len(src) ⊆ len(dst)
min(len(src),n) ⊆ len(dst)
[1,∞] ⊆ len(s)
7 ⊆ len(s), 7 ⊆ alloc(s)
min(len(s),n+1)) ⊆ len(s)
and so on

Does this fully
capture what
strncpy does?

Range of
possible values

slide 8

Constraint Generation Example

char buf[128];

while (fgets(buf, 128, stdin)) {

if (!strchr(buf, ‘\n’)) {

char error[128];

sprintf(error,“Line too long: %s\n,buf);

die(error);

}

…

}

128 ⊆ alloc(buf)

[1,128] ⊆ len(buf)

128 ⊆ alloc(error)

len(buf)+16 ⊆ len(error)

[Wagner]

slide 9

Imprecision

�Simplifies pointer arithmetic and pointer aliasing
• For example, q=p+j is associated with this constraint:

alloc(p)-j ⊆ alloc(q), len(p)-j ⊆ len(q)
• This is unsound (why?)

�Ignores function pointers
�Ignores control flow and order of statements

• Consequence: every non-trivial strcat() must be flagged
as a potential buffer overflow (why?)

�Merges information from all call sites of a function
into one variable

slide 10

Constraint Solving

�“Bounding-box” algorithm (see paper)
• Imprecise, but scalable: sendmail (32K LoC) yields a

system with 9,000 variables and 29,000 constraints

�Suppose analysis discovers len(s) is in [a,b]
range, and alloc(s) is in [c,d] range at some point
• If b ≤ c, then code is “safe”

– Does not completely rule out buffer overflow (why?)

• If a > d, then buffer overflow always occurs here
• If ranges overlap, overflow is possible

�Ganapathy et al.: model and solve the constraints
as a linear program (see paper)

slide 11

BOON: Practical Results

�Found new vulnerabilities in real systems code
• Exploitable buffer overflows in nettools and sendmail

�Lots of false positives, but still a dramatic
improvement over hand search
• sendmail: over 700 calls to unsafe string functions, of

them 44 flagged as dangerous, 4 are real errors
• Example of a false alarm:

if (sizeof from < strlen(e->e_from.q_paddr)+1) break;
strcpy(from, e->e_from.q_paddr);

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

slide 12

False path
Result: x = y = [6..31]

Context-Insensitivity is Imprecise

Adding Context Sensitivity

�Make user functions context-sensitive
• For example, wrappers around library calls

�Inefficient method: constraint inlining
• ☺ Can separate calling contexts
• / Large number of constraint variables
• / Cannot support recursion

�Efficient method: procedure summaries
• Summarize the called procedure
• Insert the summary at the callsite in the caller
• Remove false paths

[Ganapathy et al.]

slide 13

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

slide 14

Context-Sensitive Analysis
[Ganapathy et al.]

x = 5 + 1 y = 30 + 1

Summary: i = z + 1

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

slide 15

No False Paths
[Ganapathy et al.]

Jump functions

Constraints
x = [6..6]
y = [31..31]
i = [6..31]

Computing Procedure Summaries

�If function produces only difference constraints,
reduces to an all-pairs shortest-path problem

�Otherwise, Fourier-Motzkin variable elimination
�Tradeoff between precision and efficiency

• Constraint inlining: rename local variables of the called
function at each callsite

– Precise, but a huge number of variables and constraints

• Procedure summaries: merge variables across callsites
– For example, constraint for i in the foobar example

slide 16

[Ganapathy et al.]

Off-by-one Bug in sendmail-8.9.3

• orderq() reads a file from the queue directory,
copies its name into d->d_name and w->w_name

– As long as 21 bytes, including the ’\0’ terminator

• runqueue() calls dowork(w->w_name+2,...),
dowork() stores its first argument into e->e_id

• queuename() concatenates "qf" and e->e_id,
copies the result into 20-byte dfname buffer

slide 17

19 bytes

21 bytes

�Wagner et al.: a pointer to a structure of type T
can point to all structures of type T
• Finds the bug, but do you see any issues?

�Ganapathy et al.: precise points-to analysis

slide 18

CSSV

�Goal: sound static detection of buffer overflows
• What does this mean?

�Separate analysis for each procedure
�“Contracts” specify procedure’s pre- and post-

conditions, potential side effects
• Analysis only meaningful if contracts are correct

�Flow-insensitive “points-to” pointer analysis
�Transform C into a procedure over integers,

apply integer analysis to find variable constraints
• Any potential buffer overflow in the original program

violates an “assert” statement in this integer program

[Dor, Rodeh, Sagiv]

char* strcpy(char* dst, char *src)
requires

modifies
ensures

string(src) ∧
alloc(dst) > len(src)

dst.strlen, dst.is_nullt

len(dst) = = pre@len(src) ∧
return = = pre@dst

Example: strcpy Contract

slide 19

[Dor, Rodeh, Sagiv]

#define BUFSIZ 1024
#include "insert_long.h"
char buf[BUFSIZ];
char * insert_long (char *cp) {

char temp[BUFSIZ];
int i;
for (i=0; &buf[i] < cp; ++i){

temp[i] = buf[i];
}

strcpy (&temp[i],"(long)");
strcpy (&temp[i + 6], cp);
strcpy (buf, temp);
return cp + 6;

}

Example: insert_long()

slide 20

cp

buf

(long)temp

cp

buf

(long)temp

[Dor, Rodeh, Sagiv]

#define BUFSIZ 1024
#include "insert_long.h"
char buf[BUFSIZ];
char * insert_long (char *cp) {

char temp[BUFSIZ];
int i;
for (i=0; &buf[i] < cp; ++i){

temp[i] = buf[i];
}

strcpy (&temp[i],"(long)");
strcpy (&temp[i + 6], cp);
strcpy (buf, temp);
return cp + 6;

}

insert_long() Contract

slide 21

char * insert_long(char *cp)
requires string(cp) ∧

buf ≤ cp < buf + BUFSIZ
modifies cp.strlen
ensures

cp.strlen = = pre[cp.strlen] + 6
∧

return_value = = cp + 6 ;

[Dor, Rodeh, Sagiv]

slide 22

Pointer Analysis

�Goal: compute points-to relation
• This is highly nontrivial for C programs (see paper)
• Pointer arithmetic, typeless memory locations, etc.

�Abstract interpretation of memory accesses
• For each allocation, keep base and size in bytes
• Map each variable to their abstract locations
• We’ll see something similar in CCured

�Sound approximation of may-point-to
• For each pointer, set of abstract locations it can point to
• More conservative than actual points-to relation

[Dor, Rodeh, Sagiv]

slide 23

C2IP: C to Integer Program

�Integer variables only
�No function calls
�Non-deterministic
�Constraint variables
�Update statements
�Assert statements

• Any string manipulation error in the original C program
is guaranteed to violate an assertion in integer program

Based on points-to
information

[Dor, Rodeh, Sagiv]

slide 24

Transformations for C Statements

For pointer p,
lp - its location
rp - location it points to
(if several possibilities, use
nondeterministic assignment)

For abstract location l,
l.val - potential values stored in

the locations represented by l
l.offset - potential values of

the pointers represented by l
l.aSize - allocation size
l.is_nullt - null-terminated?
l.len - length of the string

[Dor, Rodeh, Sagiv]

slide 25

Correctness Assertions

All dereferenced pointers
point to valid locations

Results of pointer arithmetic
are valid

[Dor, Rodeh, Sagiv]

slide 26

Example

p = q + 5;

Assert statement:

Update statement: p.offset = q.offset + 5;

assert (
5 <= q.alloc &&
(!q.is_nullt || 5 <= q.len))

[Dor, Rodeh, Sagiv]

slide 27

Nondeterminism

*p = 0;

if (…) {
aloc1.len = p.offset;
aloc1.is_nullt = true; }

else {
alloc5.len = p.offset;
alloc5.is_nullt = true; }

p
aloc1

aloc5

[Dor, Rodeh, Sagiv]

Integer Analysis

�Interval analysis not enough
• Loses relationships between variables

�Infer variable constraints using abstract domain
of polyhedra [Cousot and Halbwachs, 1978]

• a1* var1 + a2* var2 + … + an* varn ≤ b

slide 28

y ≥ 1
x + y ≥ 3
-x + y ≤1

0 1 2 3 x

0

 1

 2

 3

y

V = <(1,2) (2,1)>
R = <(1,0) (1,1)>

join

[Dor, Rodeh, Sagiv]

#define BUFSIZ 1024
#include "insert_long.h"
char buf[BUFSIZ];
char * insert_long (char *cp) {

char temp[BUFSIZ];
int i;
for (i=0; &buf[i] < cp; ++i){

temp[i] = buf[i];
}

strcpy (&temp[i],"(long)");
strcpy (&temp[i + 6], cp);
strcpy (buf, temp);
return cp + 6;

}

insert_long() Redux

slide 29

cp

buf

(long)temp

cp

buf

(long)temp

[Dor, Rodeh, Sagiv]

Integer Analysis of insert_long()

slide 30

cp

buf

(long)temp

assert(0 ≤ i < stemp.msize - 6); // strcpy(&temp[i],"(long)");

buf.offset = 0
temp.offset = 0
0 ≤ cp.offset = i
i ≤ sbuf.len < s buf.msize
sbuf.msize = 1024
stemp.msize= 1024

Potential violation
when cp.offset ≥ 1018

cp.offset ≥ 1018

[Dor, Rodeh, Sagiv]

CCured

�Goal: make legacy C code type-safe
�Treat C as a mixture of a strongly typed,

statically checked language and an “unsafe”
language checked at runtime
• All values belong either to “safe,” or “unsafe” world

�Combination of static and dynamic checking
• Check type safety at compile-time whenever possible
• When compile-time checking fails, compiler inserts

run-time checks in the code
• Fewer run-time checks ⇒ better performance

slide 31

[Necula et al.]

Safe Pointers

�Either NULL, or a valid address of type T
�Aliases are either safe pointers, or sequence

pointers of base type T
�What is legal to do with a safe pointer?

• Set to NULL
• Cast from a sequence pointer of base type T
• Cast to an integer

�What runtime checks are required?
• Not equal to NULL when dereferenced

slide 32

Sequence Pointers

�At runtime, either an integer, or points to a known
memory area containing values of type T

�Aliases are safe, or sequence ptrs of base type T
�What is legal to do with a sequence pointer?

• Perform pointer arithmetic
• Cast to a safe pointer of base type T
• Cast to or from an integer

�What runtime checks are required?
• Points to a valid address when dereferenced

– Subsumes NULL checking

• Bounds check when dereferenced or cast to safe ptr slide 33

Dynamic Pointers

�At runtime, either an integer, or points to a known
memory area containing values of type T

�The memory area to which it points has tags that
distinguish integers from pointers

�Aliases are dynamic pointers
�What is legal to do with a dynamic pointer?

• Perform pointer arithmetic
• Cast to or from an integer or any dynamic pointer type

�Runtime checks of address validity and bounds
• Maintain tags when reading & writing to base area

slide 34

slide 35

int **a;
int i;
int acc;
int **p;
int *e;
acc=0;
for(i=0; i<100;i++){

p= a + i;
e = *p;
while((int) e % 2 == 0){

e = *(int **) e;}
acc+=((int) e >> 1);

}

safe pointer

sequence pointer

dynamic pointer

Example

For sequence and dynamic pointers, must
keep track of the address and size of the
pointed area for runtime bounds checking

�Each allocated memory area is called a home (H),
with a starting address h and a size

�Valid runtime values for a given type:
• Integers: ||int|| = N
• Safe pointers: ||τ ref SAFE|| = { h+i | h ∈ H and

0≤i<size(h) and (h=0 or kind(h)=Typed(τ)) }
• Sequence pointers: ||τ ref SEQ|| = {<h,n> | h ∈ H and

(h=0 or kind(h)=Typed(τ)) }
• Dynamic pointers: ||DYNAMIC|| = {<h,n> | h ∈ H and

(h=0 or kind(h)=Untyped) }

slide 36

Modified Pointer Representation

Safe pointers are
integers, same as

standard C

slide 37

Runtime Memory Safety

�Each memory home (i.e., allocated memory area)
has typing constraints
• Either contains values of type τ, or is untyped

�If a memory address belong to a home, its
contents at runtime must satisfy the home’s
typing constraints
• ∀h ∈ H\{0} ∀i ∈ N

if 0≤i<size(h) then
(kind(h)=Untyped ⇒ Memory[h+i] ∈ ||DYNAMIC|| and
kind(h)=Typed(τ) ⇒ Memory[h+i] ∈ ||τ||)

Runtime Checks

�Memory accesses
• If via safe pointer, only check for non-NULL
• If via sequence or dynamic pointer, also bounds check

�Typecasts
• From sequence pointers to safe pointers

– This requires a bounds check!

• From pointers to integers
• From integers to sequence or dynamic pointers

– But the home of the resulting pointer is NULL and it cannot be
dereferenced; this breaks C programs that cast pointers into
integers and back into pointers

slide 38

slide 39

�Manual: programmer annotates code
�Better: type inference

• Analyze the source code to find as many safe and
sequence pointers as possible

�This is done by resolving a set of constraints
• If p is used in pointer arithmetic, p is not safe
• If p1 is cast to p2

– Either they are of the same kind, or p1 is a sequence pointer
and p2 is a safe pointer

– Pointed areas must be of same type, unless both are dynamic

• If p1 points to p2 and p1 is dynamic, then p2 dynamic
�See the CCured paper for more details

Inferring Pointer Types

slide 40

Various CCured Issues

�Converting a pointer to an integer and back to a
pointer no longer works
• Sometimes fixed by forcing the pointer to be dynamic

�Modified pointer representation
• Not interoperable with libraries that are not recompiled

using CCured (use wrappers)
• Breaks sizeof() on pointer types

�If program stores addresses of stack variables in
memory, these variables must be moved to heap

�Garbage collection instead of explicit deallocation

slide 41

Performance

�Most pointers in benchmark programs were
inferred safe, performance penalty under 90%
• Less than 20% in half the cases
• Minimal slowdown on I/O-bound applications

– Linux kernel modules, Apache

• If all pointers were made dynamic, then 6 to 20 times
slower (similar to a pure runtime-checks approach)

• On the other hand, pure runtime-checks approach does
not require access to source code and recompilation

�Various bugs found in test programs
• Array bounds violations, uninitialized array indices

slide 42

Other Static Analysis Tools

�Coverity
�PREfix and PREfast (from Microsoft)
�PolySpace
�Cyclone dialect of C
�Many, many others

• For example, see http://spinroot.com/static/

	Static Defenses against�Memory Corruption
	Reading Assignment
	Static Analysis
	Static vs. Dynamic
	BOON
	Safety Condition
	Integer Constraints
	Constraint Generation Example
	Imprecision
	Constraint Solving
	BOON: Practical Results
	Context-Insensitivity is Imprecise
	Adding Context Sensitivity
	Context-Sensitive Analysis
	No False Paths
	Computing Procedure Summaries
	Off-by-one Bug in sendmail-8.9.3
	CSSV
	Example: strcpy Contract
	Example: insert_long()
	insert_long() Contract
	Pointer Analysis
	C2IP: C to Integer Program
	Transformations for C Statements
	Correctness Assertions
	Example
	Nondeterminism
	Integer Analysis
	insert_long() Redux
	Integer Analysis of insert_long()
	CCured
	Safe Pointers
	Sequence Pointers
	Dynamic Pointers
	Example
	Modified Pointer Representation
	Runtime Memory Safety
	Runtime Checks
	Inferring Pointer Types
	Various CCured Issues
	Performance
	Other Static Analysis Tools

