
slide 1

Vitaly Shmatikov

CS 380S

Host-Based Intrusion Detection

slide 2

Reading Assignment

Wagner and Dean. “Intrusion Detection via
Static Analysis” (Oakland 2001).
Feng et al. “Formalizing Sensitivity in Static
Analysis for Intrusion Detection” (Oakland
2004).
Garfinkel. “Traps and Pitfalls: Practical Problems
in System Call Interposition Based Security
Tools” (NDSS 2003).

slide 3

After All Else Fails

Intrusion prevention
• Find buffer overflows and remove them
• Use firewall to filter out malicious network traffic

Intrusion detection is what you do after
prevention has failed
• Detect attack in progress

– Network traffic patterns, suspicious system calls, etc.

• Discover telltale system modifications

slide 4

What Should Be Detected?

Attempted and successful break-ins
Attacks by legitimate users
• For example, illegitimate use of root privileges
• Unauthorized access to resources and data

Trojan horses
Viruses and worms
Denial of service attacks

slide 5

Where Are IDS Deployed?

Host-based
• Monitor activity on a single host
• Advantage: better visibility into behavior of individual

applications running on the host

Network-based (NIDS)
• Often placed on a router or firewall
• Monitor traffic, examine packet headers and payloads
• Advantage: single NIDS can protect many hosts and

look for global patterns

slide 6

Intrusion Detection Techniques

Misuse detection
• Use attack “signatures” (need a model of the attack)

– Sequences of system calls, patterns of network traffic, etc.

• Must know in advance what attacker will do (how?)
• Can only detect known attacks

Anomaly detection
• Using a model of normal system behavior, try to

detect deviations and abnormalities
– E.g., raise an alarm when a statistically rare event(s) occurs

• Can potentially detect unknown attacks

Which is harder to do?

slide 7

Misuse Detection (Signature-Based)

Set of rules defining a behavioral signature likely
to be associated with attack of a certain type
• Example: buffer overflow

– A setuid program spawns a shell with certain arguments
– A network packet has lots of NOPs in it
– Very long argument to a string function

• Example: denial of service via SYN flooding
– Large number of SYN packets without ACKs coming back

…or is this simply a poor network connection?

Attack signatures are usually very specific and
may miss variants of known attacks
• Why not make signatures more general?

slide 8

Extracting Misuse Signatures

Use invariant characteristics of known attacks
• Bodies of known viruses and worms, port numbers of

applications with known buffer overflows, RET
addresses of overflow exploits

• Hard to handle mutations
– Polymorphic viruses: each copy has a different body

Big research challenge: fast, automatic extraction
of signatures of new attacks
• Honeypots are useful - try to attract malicious activity,

be an early target

slide 9

Anomaly Detection

Define a profile describing “normal” behavior
• Works best for “small”, well-defined systems (single

program rather than huge multi-user OS)

Profile may be statistical
• Build it manually (this is hard)
• Use machine learning and data mining techniques

– Log system activities for a while, then “train” IDS to recognize
normal and abnormal patterns

• Risk: attacker trains IDS to accept his activity as normal
– Daily low-volume port scan may train IDS to accept port scans

IDS flags deviations from the “normal” profile

slide 10

Level of Monitoring

Which types of events to monitor?
• OS system calls
• Command line
• Network data (e.g., from routers and firewalls)
• Processes
• Keystrokes
• File and device accesses
• Memory accesses

Auditing / monitoring should be scalable

slide 11

STAT and USTAT

Intrusion signature = sequence of system states
• State machine describing the intrusion must be

specified by an expert
– Initial state: what system looks like before attack
– Compromised state: what system looks like after attack
– Intermediate states and transitions

State transition analysis is then used to detect
when system matches known intrusion pattern

[Ilgun, Porras]

slide 12

User creates
File1

USTAT Example

S1 S2 S3

1. Fileset #1 != empty
2. Files are setuid

1. name(File1) == -*
2. typeof(File1) == link
3. owner(link_to(File1)) != user
4. name(link_to(File1))

exists_in Fileset #1

1. access(user,euid)
== root

user% ln someSetuidRootScript -x
user% -x
root%

Creates symbolic link with
same permissions and
ownership as targetOpens interactive subshell

User executes
File1

State diagram of this attack

slide 13

Statistical Anomaly Detection

Compute statistics of certain system activities
Report an alert if statistics outside range
Example: IDES (Denning, mid-1980s)
• For each user, store daily count of certain activities

– For example, fraction of hours spent reading email

• Maintain list of counts for several days
• Report anomaly if count is outside weighted norm

Problem: the most unpredictable user is the most important

slide 14

“Self-Immunology” Approach

Normal profile: short sequences of system calls
• Use strace on UNIX

… open,read,write,mmap,mmap,getrlimit,open,close …

open,read,write,mmap
read,write,mmap,mmap

…

write,mmap,mmap,getrlimit
mmap,mmap,getrlimit,open

…

remember last K events

Compute % of traces that
have been seen before.
Is it above the threshold?

Y

N

normal

abnormalRaise alarm if a high fraction of
system call sequences haven’t

been observed before

[Forrest]

slide 15

System Call Interposition

Observation: all sensitive system resources are
accessed via OS system call interface
• Files, sockets, etc.

Idea: monitor all system calls and block those
that violate security policy
• Inline reference monitors
• Language-level: Java runtime environment inspects

stack of the function attempting to access a sensitive
resource to check whether it is permitted to do so

• Common OS-level approach: system call wrapper
– Want to do this without modifying OS kernel (why?)

slide 16

Janus
[Berkeley project, 1996]

slide 17

Policy Design

Designing a good system call policy is not easy
When should a system call be permitted and
when should it be denied?
Example: ghostscript
• Needs to open X windows
• Needs to make X windows calls
• But what if ghostscript reads characters you type in

another X window?

slide 18

ptrace() – can register a callback that will be
called whenever process makes a system call
• Coarse: trace all calls or none
• If traced process forks, must fork the monitor, too

Monitor
process

Untrusted
application

OS

open(“/etc/passwd”) wake-up

Note: Janus used ptrace initially, later discarded…

Trapping System Calls: ptrace()

slide 19

Problems and Pitfalls

Incorrectly mirroring OS state
Overlooking indirect paths to resources
• Inter-process sockets, core dumps

Race conditions (TOCTTOU)
• Symbolic links, relative paths, shared thread meta-data

Unintended consequences of denying OS calls
• Process dropped privileges using setuid but didn’t check

value returned by setuid… and monitor denied the call

Bugs in reference monitors and safety checks
• What if runtime environment has a buffer overflow?

[Garfinkel]

slide 20

Incorrectly Mirroring OS State

Policy: “process can bind TCP sockets on port 80,
but cannot bind UDP sockets”

6 = socket(UDP, …) Monitor: “6 is UDP socket”
7 = socket(TCP, …) Monitor: “7 is TCP socket”
close(7)
dup2(6,7) Monitor’s state now inconsistent with OS
bind(7, …) Monitor: “7 is TCP socket, Ok to bind”

Oops!

[Garfinkel]

slide 21

TOCTTOU in Syscall Interposition

User-level program makes a system call
• Direct arguments in stack variables or registers
• Indirect arguments are passed as pointers

Wrapper enforces some security condition
• Arguments are copied into kernel memory (why?) and

analyzed and/or substituted by the syscall wrapper

What if arguments change right here?
If permitted by the wrapper, the call proceeds
• Arguments are copied into kernel memory
• Kernel executes the call

slide 22

Exploiting TOCTTOU Conditions

Page fault on an indirect syscall argument
• Force wrapper to wait on disk I/O and use a concurrent

process to replace already checked arguments
• Example: rename() – see Watson’s paper

– Page out the target path of rename() to disk
– Wrapper checks the source path, then waits for target path
– Concurrent attack process replaces the source path

Voluntary thread sleeps
• Example: TCP connect() – see Watson’s paper

– Kernel copies in the arguments
– Thread calling connect() waits for a TCP ACK
– Concurrent attack process replaces the arguments

[Watson]

slide 23

TOCTTOU via a Page Fault
[Watson]

slide 24

TOCTTOU on Sysjail
[Watson]

slide 25

Mitigating TOCTTOU

Make pages with syscall arguments read-only
• Tricky implementation issues
• Prevents concurrent access to data on the same page

Avoid shared memory between user process,
syscall wrapper and the kernel
• Argument caches used by both wrapper and kernel
• Message passing instead of argument copying

– Why does this help?

System transactions
Integrate security checks into the kernel
• Requires OS modification!

slide 26

Interposition + Static Analysis

Assumption: attack requires making system calls
1. Analyze the program to determine its expected

behavior
2. Monitor actual behavior
3. Flag an intrusion if there is a deviation from the

expected behavior
• System call trace of the application is constrained to

be consistent with the source or binary code
• Main advantage: a conservative model of expected

behavior will have zero false positives

slide 27

Runtime Monitoring

One approach: run slave copy of application
• Replication is hard; lots of non-determinism in code

– Random number generation, process scheduling, interaction
with outside environment

• Slave is exposed to the same risks as master
– Any security flaw in the master is also present in the slave

• Virtual machines make problem easier!

Another approach: simulate control flow of the
monitored application

slide 28

Trivial “Bag-O’Calls” Model

Determine the set S of all system calls that an
application can potentially make
• Lose all information about relative call order

At runtime, check for each call whether it
belongs to this set
Problem: large number of false negatives
• Attacker can use any system call from S

Problem: |S| very big for large applications

slide 29

Callgraph Model

Build a control-flow graph of the application by
static analysis of its source or binary code
Result: non-deterministic finite-state automaton
(NFA) over the set of system calls
• Each vertex executes at most one system call
• Edges are system calls or empty transitions
• Implicit transition to special “Wrong” state for all

system calls other than the ones in original code
• All other states are accepting

System call automaton is conservative
• No false positives!

[Wagner and Dean]

slide 30

NFA Example

• No false positives
• Monitoring is O(|V|) per system call
• Problem: attacker can exploit impossible paths

– The model has no information about stack state!

[Wagner and Dean]

slide 31

write

log

exec

myexec

logsetuid

mysetuid

log

void
myexec (char *src)
{
log(“Execing”, 7);
exec(“/bin/ls”);

}

void
mysetuid (uid_t uid)
{
setuid(uid);
log(“Set UID”, 7);

}

void
log (char *msg,

int len)
{
write(fd, msg, len);

}

Another NFA Example
[Giffin]

slide 32

NFA Permits Impossible Paths

ε

εε

ε

write

log

exec

myexec

log

setuid

mysetuid

log

Impossible execution path
is permitted by NFA!

slide 33

NFA: Modeling Tradeoffs

A good model should be…
• Accurate: closely models expected execution

– Need context sensitivity!

• Fast: runtime verification is cheap

NFAFast

Slow

AccurateInaccurate

slide 34

Abstract Stack Model

NFA is not precise, loses stack information
Alternative: model application as a context-free
language over the set of system calls
• Build non-deterministic pushdown automaton (PDA)
• Each symbol on the PDA stack corresponds to single

stack frame in the actual call stack
• All valid call sequences accepted by PDA; enter

“Wrong” state when an impossible call is made

slide 35

ε

ε
push A

pop A

ε

ε
pop B

push B
write

log

exec

myexec

log

setuid

mysetuid

log

PDA Example
[Giffin]

slide 36

Another PDA Example
[Wagner and Dean]

slide 37

PDA: Modeling Tradeoffs

Non-deterministic PDA has high cost
• Forward reachability algorithm is cubic in

automaton size
• Unusable for online checking

NFAFast

Slow

AccurateInaccurate

PDA

slide 38

Dyck Model

Idea: make stack updates (i.e., function calls)
explicit symbols in the automaton alphabet
• Result: stack-deterministic PDA

At each moment, the monitor knows where the
monitored application is in its call stack
• Only one valid stack configuration at any given time

How does monitor learn about function calls?
• Use binary rewriting to instrument the code to issue

special “null” system calls to notify the monitor
– Potential high cost of introducing many new system calls

• Can’t rely on instrumentation if application is corrupted

[Giffin et al.]

slide 39

Example of Dyck Model

A

A

B

B

write

log

exec

myexecsetuid

mysetuid

Runtime monitor now
“sees” these transitions

[Giffin]

slide 40

CFG Extraction Issues

Function pointers
• Every pointer could refer to any function whose

address is taken
Signals
• Pre- and post-guard extra paths due to signal

handlers
setjmp() and longjmp()
• At runtime, maintain list of all call stacks possible at a

setjmp()
• At longjmp() append this list to current state

slide 41

System Call Processing Complexity

n is state count
m is transition count

Model
Time & Space

Complexity

NFA O(n)

PDA O(nm2)

Dyck O(n)

slide 42

Dyck: Runtime Overheads

Program
Unverified
execution

Verified
against Dyck Increase

procmail 0.5 0.8 56%

gzip 4.4 4.4 1%

eject 5.1 5.2 2%

fdformat 112.4 112.4 0%

cat 18.4 19.9 8%

Execution times in seconds

Many tricks to improve performance
• Use static analysis to eliminate unnecessary null system calls
• Dynamic “squelching” of null calls

slide 43

Persistent Interposition Attacks

Observation: malicious behavior need not
involve system call anomalies
Hide malicious code inside a server
• Inject via a memory corruption attack
• Hook into a normal execution path (how?)

Malicious code communicates with its master by
“piggybacking” on normal network I/O
• No anomalous system calls
• No anomalous arguments to any calls except those

that read and write

[Parampalli et al.]

slide 44

Virtual Machine Monitors

Software layer between hardware and OS
virtualizes and manages hardware resources

IBM VM/370

App App App App

CMS MVS CMS CMS

IBM Mainframe

slide 45

History of Virtual Machines

IBM VM/370 – A VMM for IBM mainframe
• Multiple OS environments on expensive hardware
• Desirable when few machines around

Popular research idea in 1960s and 1970s
• Entire conferences on virtual machine monitors
• Hardware/VMM/OS designed together

Interest died out in the 1980s and 1990s
• Hardware got cheap
• OS became more more powerful (e.g., multi-user)

slide 46

VMware

VMware virtual machine is an application execution
environment with its own operating system

VMware Virtualization Layer

Application

Windows
2000

Windows
NT Linux Windows

XP

Intel Architecture

ApplicationApplication Application

slide 47

VM Terminology

VMM (Virtual Machine Monitor) – software that
creates VMs
Host – system running the VMM
Guest – “monitored host” running inside a VM

slide 48

Isolation at Multiple Levels

Data security
• Each VM is managed independently

– Different OS, disks (files, registry), MAC address (IP address)
– Data sharing is not possible; mandatory I/O interposition

Fault isolation
• Crashes are contained within a VM

Performance
• Can guarantee performance levels for individual VMs

on VMWare ESX server

No assumptions required for software inside a
VM (important for security!)

slide 49

Observation by Host System

“See without being seen” advantage
• Very difficult within a computer, possible on host

Observation points
• Networking (through vmnet), physical memory, disk

I/O and any other I/O

Intel Hardware

Windows 2000

Honeypot OBS
Windows 2000

Honeypot

Host

slide 50

Virtual Machine-Based IDS

Run the monitored host within a virtual machine
(VM) sandbox on a different host
Run the intrusion detection system (IDS)
outside the VM
Allow the IDS to pause the VM and inspect the
hardware state of host
Policy modules determine if the state is good or
bad, and how to respond

slide 51

VMI IDS Architecture

slide 52

Components of VMI IDS

OS interface library
• Interprets hardware state into OS-level events

– For example, list of all processes

• Hard to implement and tied to a particular guest OS

Policy modules
• Determine if the OS has been compromised and what

action to take
• Many detection techniques can be implemented as

policy modules and thus used to prevent intrusions

slide 53

Livewire

VMware + interposition/inspection hooks
Six sample policy modules
• Most related to existing host-based intrusion

detection techniques

Uses crash as OS interface library
• Linux crash dump examination tool
• Same goal: interpret the host’s raw memory in terms

of OS-level events

[Garfinkel and Rosenblum]

slide 54

Livewire Policy Modules

User program integrity detector
• Periodically hashes unchanging sections of running

programs, compares to those of known good originals

Signature detector
• Periodically scans guest memory for substrings

belonging to known malware
– Finds malware in unexpected places, like filesystem cache

Lie detector
• Detects inconsistencies between hardware state and

what is reported by user-level programs (ls, netstat, …)

Raw socket detector

slide 55

Enforcing Confinement Policies

Event-driven modules run in response to a
change in hardware state
Memory access enforcer
• Prevents sensitive portions of the kernel from being

modified

NIC access enforcer
• Prevents the guest’s network interface card (NIC)

from entering promiscuous mode or having a non-
authorized MAC address

slide 56

Other Advantages

Resistant to “swap-out” malware
• Sophisticated malware might detect an IDS running

on the infected host and remove itself from memory
when a scan is performed

• Difficult to detect a scanner when the scanner is
running outside your VM

Can save entire system state for forensics
Fail closed

slide 57

VM Issues

Guest can often tell that he is running inside a VM
• Timing: measure time required for disk access

– VM may try to run clock slower to prevent this attack…
– …but slow clock may break an application like music player

Better visibility into guest ⇒ worse performance
OS interface library is complex, can be fooled
Policy problem
• Even with perfect visibility into the monitored system,

how to differentiate good and bad behavior?
• Hard to express and enforce fine-grained policies

– “Do not write any SSNs from payroll into Web database”

	Host-Based Intrusion Detection
	Reading Assignment
	After All Else Fails
	What Should Be Detected?
	Where Are IDS Deployed?
	Intrusion Detection Techniques
	Misuse Detection (Signature-Based)
	Extracting Misuse Signatures
	Anomaly Detection
	Level of Monitoring
	STAT and USTAT
	USTAT Example
	Statistical Anomaly Detection
	“Self-Immunology” Approach
	System Call Interposition
	Janus 			
	Policy Design
	Trapping System Calls: ptrace()
	Problems and Pitfalls
	Incorrectly Mirroring OS State
	TOCTTOU in Syscall Interposition
	Exploiting TOCTTOU Conditions
	TOCTTOU via a Page Fault
	TOCTTOU on Sysjail
	Mitigating TOCTTOU
	Interposition + Static Analysis
	Runtime Monitoring
	Trivial “Bag-O’Calls” Model
	Callgraph Model
	NFA Example
	Another NFA Example
	NFA Permits Impossible Paths
	NFA: Modeling Tradeoffs
	Abstract Stack Model
	PDA Example
	Another PDA Example
	PDA: Modeling Tradeoffs
	Dyck Model	
	Example of Dyck Model
	CFG Extraction Issues
	System Call Processing Complexity
	Dyck: Runtime Overheads
	Persistent Interposition Attacks
	Virtual Machine Monitors
	History of Virtual Machines
	VMware
	VM Terminology
	Isolation at Multiple Levels
	Observation by Host System
	Virtual Machine-Based IDS
	VMI IDS Architecture
	Components of VMI IDS
	Livewire
	Livewire Policy Modules
	Enforcing Confinement Policies
	Other Advantages
	VM Issues

