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Reading Assignment

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i ) - R B

® Wagner and Dean. “Intrusion Detection via
Static Analysis” (Oakland 2001).

®Feng et al. “Formalizing Sensitivity in Static
Analysis for Intrusion Detection” (Oakland
2004).

@ Garfinkel. “Traps and Pitfalls: Practical Problems
In System Call Interposition Based Security
Tools” (NDSS 2003).
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After All Else Falls
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@ Intrusion prevention
e Find buffer overflows and remove them
e Use firewall to filter out malicious network traffic

@ Intrusion detection is what you do after
prevention has failed

e Detect attack in progress
— Network traffic patterns, suspicious system calls, etc.

e Discover telltale system modifications
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What Should Be Detected?
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& Attempted and successful break-ins

@ Attacks by legitimate users
e For example, illegitimate use of root privileges
e Unauthorized access to resources and data

& Trojan horses
@ Viruses and worms
@ Denial of service attacks
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Where Are IDS Deployed?
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& Host-based

e Monitor activity on a single host

e Advantage: better visibility into behavior of individual
applications running on the host

® Network-based (NIDS)

e Often placed on a router or firewall
e Monitor traffic, examine packet headers and payloads

e Advantage: single NIDS can protect many hosts and
look for global patterns
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Intrusion Detection Techniques
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@ Misuse detection
e Use attack “signatures” (need a model of the attack)
— Sequences of system calls, patterns of network traffic, etc.
e Must know Iin advance what attacker will do (how?)
e Can only detect known attacks

€ Anomaly detection

e Using a model of normal system behavior, try to
detect deviations and abnormalities

— E.g., raise an alarm when a statistically rare event(s) occurs
e Can potentially detect unknown attacks

& \Which is harder to do?
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Misuse Detection (Signature-Based)
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@ Set of rules defining a behavioral signature likely
to be associated with attack of a certain type
e Example: buffer overflow
— A setuid program spawns a shell with certain arguments

— A network packet has lots of NOPs in it
— Very long argument to a string function

e Example: denial of service via SYN flooding
— Large number of SYN packets without ACKs coming back
...or is this simply a poor network connection?

@ Attack signatures are usually very specific and
may miss variants of known attacks

 \Why not make signatures more general?
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Extracting Misuse Signatures
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® Use invariant characteristics of known attacks

e Bodies of known viruses and worms, port numbers of
applications with known buffer overflows, RET
addresses of overflow exploits

e Hard to handle mutations
— Polymorphic viruses: each copy has a different body
€ Big research challenge: fast, automatic extraction
of signatures of new attacks

e Honeypots are useful - try to attract malicious activity,
be an early target
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Anomaly Detection
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@ Define a profile describing “normal” behavior
e \Works best for “small”, well-defined systems (single
program rather than huge multi-user OS)
@ Profile may be statistical
e Build it manually (this is hard)

e Use machine learning and data mining techniques

— Log system activities for a while, then “train” IDS to recognize
normal and abnormal patterns

e Risk: attacker trains IDS to accept his activity as normal
— Daily low-volume port scan may train IDS to accept port scans

@ 1DS flags deviations from the “normal” profile
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Level of Monitoring
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€ Which types of events to monitor?
e OS system calls
e Command line
e Network data (e.g., from routers and firewalls)
e Processes
e Keystrokes
e File and device accesses
e Memory accesses

@ Auditing / monitoring should be scalable
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STAT and USTAT
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@ Intrusion sighature = sequence of system states

e State machine describing the intrusion must be
specified by an expert
— Initial state: what system looks like before attack
— Compromised state: what system looks like after attack
— Intermediate states and transitions

@ State transition analysis is then used to detect
when system matches known intrusion pattern
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USTAT Example
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rYo =X . : same permissions and
users ﬁ Opens interactive subshell ownership as target
root%

user% In someSetuirdRootScript —Xﬁ Creates symbolic link with

State diagram of this attack

User creates /—\ User executes
o1 Filel ’w Filel | S3

1. name(Filel) == -* 1. access(user,euid)
2. typeof(Filel) == link == root
3. owner(link_to(Filel)) !'= user
4. name(link_to(Filel))
exists_in Fileset #1

1. Fileset #1 = empty
2. Files are setuid
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Statistical Anomaly Detection
€ Compute statistics of certain system activities
®Report an alert if statistics outside range

¥ Example: IDES (Denning, mid-1980s)

e For each user, store daily count of certain activities
— For example, fraction of hours spent reading email

e Maintain list of counts for several days
e Report anomaly if count is outside weighted norm

Problem: the most unpredictable user is the most important
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“Self-lmmunology” Approach
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®Normal profile: short sequences of system calls
e Use strace on UNIX

.. open,read,write, mmap, mmap, getrlimit,open, close ...
) - 4

Y -

remember last K events
|—> normal
open, read, write, mmap
read, write, mmap, mmap Compute % of traces that
wite, mmap, mmap,getrlimit [ e beenscen befre,
mmap, mmap,getrlimit,open \
abnormal
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System Call Interposition
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€ Observation: all sensitive system resources are
accessed via OS system call interface

e Files, sockets, etc.

@ Idea: monitor all system calls and block those
that violate security policy
e Inline reference monitors

e Language-level: Java runtime environment inspects
stack of the function attempting to access a sensitive
resource to check whether it is permitted to do so

e Common OS-level approach: system call wrapper
— Want to do this without modifying OS kernel (why?)
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Janus
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Policy Design
@ Designing a good system call policy is not easy

€ When should a system call be permitted and
when should it be denied?

€ Example: ghostscript
e Needs to open X windows

e Needs to make X windows calls

e But what if ghostscript reads characters you type in
another X window?
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Trapping System Calls: ptrace()
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open(“/etc/passwd”)

Monitor
process

wake-up

OS

@ ptrace() — can register a callback that will be
called whenever process makes a system call

e Coarse: trace all calls or none

e |If traced process forks, must fork the monitor, too

Note: Janus used ptrace initially, later discarded...
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Problems and Pitfalls
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@ Incorrectly mirroring OS state

® Overlooking indirect paths to resources
e Inter-process sockets, core dumps

® Race conditions (TOCTTOU)
e Symbolic links, relative paths, shared thread meta-data

€ Unintended consequences of denying OS calls

e Process dropped privileges using setuid but didn’t check
value returned by setuid... and monitor denied the call

@ Bugs in reference monitors and safety checks
e What if runtime environment has a buffer overflow?

slide 19



Incorrectly Mirroring OS State
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Policy: “process can bind TCP sockets on port 80,
but cannot bind UDP sockets”

6 = socket(UDP, ...) Monitor: “6 is UDP socket”
7 = socket(TCP, ...) Monitor: “7 is TCP socket”

close(7)
dup2(6,7) Monitor’s state now inconsistent with OS
bind(7, ...) Monitor: “7 is TCP socket, Ok to bind”

Oops!
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TOCTTOU In Syscall Interposition
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@ User-level program makes a system call
e Direct arguments in stack variables or registers
e Indirect arguments are passed as pointers

® Wrapper enforces some security condition

e Arguments are copied into kernel memory (why?) and
analyzed and/or substituted by the syscall wrapper

€ \What if arguments change right here?

@ If permitted by the wrapper, the call proceeds
e Arguments are copied into kernel memory
e Kernel executes the call
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Exploiting TOCTTOU Conditions

O i o o o T e T R P o T e S T P P i+ o T e o Y O i o o e B W T L Y P [WatS O n ]

@ Page fault on an indirect syscall argument

e Force wrapper to wait on disk 1/0 and use a concurrent
process to replace already checked arguments

e Example: rename() — see Watson’s paper
— Page out the target path of rename() to disk
— Wrapper checks the source path, then waits for target path
— Concurrent attack process replaces the source path

@ \/oluntary thread sleeps

e Example: TCP connect() — see Watson’s paper
— Kernel copies in the arguments
— Thread calling connect() waits for a TCP ACK

— Concurrent attack process replaces the arguments
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TOCTTOU via a Page Fault
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TOCTTOU on Sysjalil
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I\/Iltlgatlng TOCTTOU
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® Make pages with syscall arguments read-only
e Tricky implementation issues
e Prevents concurrent access to data on the same page

€ Avoid shared memory between user process,
syscall wrapper and the kernel

e Argument caches used by both wrapper and kernel

e Message passing instead of argument copying
— Why does this help?

@ System transactions

@ Integrate security checks into the kernel
e Requires OS modification!
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Interposmon + Statlc Analy5|s
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Assumption: attack requires making system calls

1. Analyze the program to determine its expected
behavior

2. Monitor actual behavior

3. Flag an intrusion if there is a deviation from the
expected behavior

e System call trace of the application is constrained to
be consistent with the source or binary code

e Main advantage: a conservative model of expected
behavior will have zero false positives
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Runtime Monitoring
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€ One approach: run slave copy of application

e Replication is hard; lots of non-determinism in code

— Random number generation, process scheduling, interaction
with outside environment

e Slave Is exposed to the same risks as master
— Any security flaw in the master is also present in the slave

e Virtual machines make problem easier!

@ Another approach: simulate control flow of the
monitored application
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@ Determine the set S of all system calls that an
application can potentially make

e | ose all information about relative call order

¥ At runtime, check for each call whether it
belongs to this set

@ Problem: large number of false negatives
e Attacker can use any system call from S

@®Problem: |S]| very big for large applications
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Callgraph Model
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@ Build a control-flow graph of the application by
static analysis of its source or binary code

@ Result: non-deterministic finite-state automaton
(NFA) over the set of system calls
e Each vertex executes at most one system call
e Edges are system calls or empty transitions

e Implicit transition to special “Wrong” state for all
system calls other than the ones in original code

e All other states are accepting

€ System call automaton is conservative
e No false positives!
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NFA Example
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f(int x) { //_ N open() TN __\
? id() : id(); ntrv(g) v — — Tt

;++igetu1 () : geteuid() \{_JE/‘/ vV ,;7ET?»@

y ~ \

-

g0 { close() Y o getuid() |
fd = open("foo", O_RDONLY); — eteuid
£(0); close(fd); £(1); &—v® ~. 5 O

| exin(0); N SO N T i)

; \Exif(g)) W) N

e No false positives
e Monitoring is O(|V]) per system call

e Problem: attacker can exploit impossible paths
— The model has no information about stack state!
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Another NFA Example
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mysetuid

setuid

log

void
mysetuid (uid_t uid)
{
setuid(uid);
log(““Set UID”, 7);
+

log
o

write

void
log (char *msg,
int len)
{
write(fd, msg, len);
+

myexec

log

o

eXecC

o

void
myexec (char *src)

{
log(““Execing”, 7);
exec(“/bin/l1s™);

}
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NFA Permits Impossible Paths
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mysetuid

Ll

setuid
c R\ e

o

log
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NFA: Modeling Tradeoffs
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€ A good model should be...

e Accurate: closely models expected execution

— Need context sensitivity!

e Fast: runtime verification is cheap

Inaccurate

Accurate

Slow

Fast

NFA
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Abstract Stack Model

O i S o o T e T P P S o e S T Y P i s« Y . i o o o e T T P P i ) - R B

@ NFA is not precise, loses stack information

@ Alternative: model application as a context-free
language over the set of system calls
e Build non-deterministic pushdown automaton (PDA)

e Each symbol on the PDA stack corresponds to single
stack frame Iin the actual call stack

e All valid call sequences accepted by PDA; enter
“Wrong” state when an impossible call is made
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PDA Example
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mysetuid

e

setuid

my

 — I —
ush A . ush B

|Og P write P |0g
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Another PDA Example
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while (true)
case pop() of

f(int x) { Entry(f) = getuid(] Exit(f) Entry( f) = push(Exit(f)): push(getuid())
X 7 getuid() : geteuid(): | geteuid|) Exit(f) Elltl'y(.f) = push(Exit(f)): push(geteuid())
X+ ) Exit(f) u= € Exit(f) = no-op
} Entry(g) ::= cpen() v Entry(g) = push(v); push(open())
20 1 " — Entry(f] ¢’ v = push(v"); push(Entry(f))
fd = opcn("i’oo", O_RDONLY) ; v’ = C]_OSE{) w v’ = pLISh[:‘i'.U}; pUSh(ClOSE{))
£(0); closc(fd); £(1); w = Entry(f] w’ w = push(w’); push(Entry(f))
exit (0); w' = exit() Exit(qg) ' = push(Exit(g)):; push(exit())
} Exit(g) @— € Exit(y) = no-op
a € ¥ = read and consume a from the input

otherwise = enter the crror state, Wrong
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PDA: Modeling Tradeoffs
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€ Non-deterministic PDA has high cost
e Forward reachability algorithm is cubic In

automaton size

e Unusable for online checking

Inaccurate

Accurate

Slow

PDA

Fast

NFA
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Dyck Model
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@ Idea: make stack updates (i.e., function calls)
explicit symbols in the automaton alphabet

e Result: stack-deterministic PDA

& At each moment, the monitor knows where the
monitored application is in its call stack

e Only one valid stack configuration at any given time

€ How does monitor learn about function calls?

e Use binary rewriting to instrument the code to issue
special “null” system calls to notify the monitor
— Potential high cost of introducing many new system calls

e Can’t rely on instrumentation if application is corrupted
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Example of Dyck Model
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mysetuid

setuid myexec

e

A B

exec
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CFG Extraction Issues
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# Function pointers

e Every pointer could refer to any function whose
address Is taken

# Signals

e Pre- and post-guard extra paths due to signal
handlers

@ setjmp() and longjmp()
e At runtime, maintain list of all call stacks possible at a

setimp()
e At longymp() append this list to current state
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System Call Processing Complexity
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Time & Space
Model complexity
NFA O(n)
PDA O(nm?)
Dyck O(n)

N 1s state count
m IS transition count
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Dyck: Runtime Overheads
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Execution times in seconds

Unverified Verified
Program | execution | against Dyck | Increase
procmail 0.5 0.8 56%
gzip 4.4 4.4 1%
eject 5.1 5.2 2%
fdformat 112.4 112.4 0%
cat 18.4 19.9 8%

€ Many tricks to improve performance

» Use static analysis to eliminate unnecessary null system calls
e Dynamic “squelching” of null calls
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Persistent Interposition Attacks

Y g N Y e T e Y O e e O T R O s T B [Parampa”i et a| ]

¥ Observation: malicious behavior need not
Involve system call anomalies

@ Hide malicious code inside a server
e |nject via a memory corruption attack
e Hook into a normal execution path (how?)

€ Malicious code communicates with its master by
“piggybacking” on normal network 1/0

e No anomalous system calls

e No anomalous arguments to any calls except those
that read and write
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Virtual Machine Monitors
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App App App App

Software layer between hardware and OS
virtualizes and manages hardware resources

slide 44



History of Virtual Machines
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¢ IBM VM/370 — A VMM for IBM mainframe

e Multiple OS environments on expensive hardware
e Desirable when few machines around

@ Popular research idea in 1960s and 1970s

e Entire conferences on virtual machine monitors
e Hardware/VMM/OS designed together

@ Interest died out in the 1980s and 1990s

e Hardware got cheap
e OS became more more powerful (e.g., multi-user)

slide 45



VMware
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~

Application | Application | Application  Application

VMware virtual machine is an application execution
environment with its own operating system
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€ VMM (Virtual Machine Monitor) — software that
creates VMs

@ Host — system running the VMM
@ Guest — “monitored host” running inside a VM
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Isolation at Multiple Levels
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# Data security

e Each VM is managed independently
— Different OS, disks (files, registry), MAC address (IP address)
— Data sharing is not possible; mandatory 1/0 interposition

@ Fault isolation
e Crashes are contained within a VM

@ Performance
e Can guarantee performance levels for individual VMs
on VMWare ESX server
@ No assumptions required for software inside a
VM (important for security!)
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Observation by Host System

€ “See without being seen” advantage

e Very difficult within a computer, possible on host

@ Observation points

e Networking (through vmnet), physical memory, disk
/0 and any other 1/0

Windows 2000 Windows 2000

Host

Intel Hardware
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€ Run the monitored host within a virtual machine
(VM) sandbox on a different host

@ Run the intrusion detection system (IDS)
outside the VM

@ Allow the IDS to pause the VM and inspect the
nardware state of host

@ Policy modules determine if the state is good or
pad, and how to respond
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VMI IDS Architecture
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Query

i
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0S Interface Library

~,

ey

Hardware State
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Monitored Host
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Virtual Machine
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Components of VMI IDS
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€ 0OS interface library

e Interprets hardware state into OS-level events
— For example, list of all processes

e Hard to implement and tied to a particular guest OS

@ Policy modules

e Determine if the OS has been compromised and what
action to take

e Many detection techniques can be implemented as
policy modules and thus used to prevent intrusions
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Livewire
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®VMware + interposition/inspection hooks

# Six sample policy modules

e Most related to existing host-based intrusion
detection techniques

@ Uses crash as OS interface library
e Linux crash dump examination tool

e Same goal: interpret the host’'s raw memory in terms
of OS-level events
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Livewire Policy Modules
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€ User program integrity detector
e Periodically hashes unchanging sections of running
programs, compares to those of known good originals
# Signature detector

e Periodically scans guest memory for substrings
belonging to known malware
— Finds malware in unexpected places, like filesystem cache

@ Lie detector

e Detects inconsistencies between hardware state and
what is reported by user-level programs (Is, netstat, ...)

® Raw socket detector
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Enforcing Confinement Policies
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@ Event-driven modules run in response to a
change in hardware state

€ Memory access enforcer

e Prevents sensitive portions of the kernel from being
modified

@ NIC access enforcer

e Prevents the guest’s network interface card (NIC)
from entering promiscuous mode or having a non-
authorized MAC address
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Other Advantages
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@ Resistant to “swap-out” malware

e Sophisticated malware might detect an IDS running
on the infected host and remove itself from memory
when a scan is performed

e Difficult to detect a scanner when the scanner Is
running outside your VM

€ Can save entire system state for forensics
@ Fail closed
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VM lIssues
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€ Guest can often tell that he is running inside a VM

e Timing: measure time required for disk access
— VM may try to run clock slower to prevent this attack...
— ...but slow clock may break an application like music player

@ Better visibility into guest = worse performance
€ OS interface library is complex, can be fooled

@ Policy problem

e Even with perfect visibility into the monitored system,
how to differentiate good and bad behavior?

e Hard to express and enforce fine-grained policies

— “Do not write any SSNs from payroll into Web database”
slide 57
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