
slide 1

Vitaly Shmatikov

CS 380S

Static Detection of
Web Application Vulnerabilities

slide 2

Reading Assignment

Jovanovic et al. “Pixy: A Static Analysis Tool for
Detecting Web Application Vulnerabilities.”
Wassermann and Su. “Sound and Precise Analysis
of Web Applications for Injection Vulnerabilities”
(PLDI 2007).

slide 3

Pixy

Uses static analysis to detect cross-site scripting
and SQL injection vulnerabilities in PHP apps
• Same ideas apply to other languages

Basic idea: identify whether “tainted” values can
reach “sensitive” points in the program
• Tainted values: inputs that come from the user

(should always be treated as potentially malicious)
• Sensitive “sink”: any point in the program where a

value is displayed as part of HTML page (XSS) or
passed to the database back-end (SQL injection)

[Jovanovic, Kruegel, Kirda]

slide 4

Example of Injection Vulnerabilities

tainted
sensitive sink

slide 5

Main Static Analysis Issues

Taint analysis
• Determine, at each program point, whether a given

variable holds unsanitized user input

Data flow analysis
• Trace propagation of values through the program

Alias analysis
• Determine when two variables refer to the same

memory location (why is this important?)

Pixy: flow-sensitive, context-sensitive,
interprocedural analysis (what does this mean?)

slide 6

Handling Imprecision

Static data flow analysis is necessarily imprecise
(why?)
Maintain a lattice of possible values
• Most precise at the bottom, least precise (Ω) at the top

Example from the paper
v = 3;
if (some condition on user input)

v = 3;
else v = 4;

slide 7

Annotated Control-Flow Graph

Carrier lattice

slide 8

Data Flow Analysis in PHP

PHP is untyped; this makes things difficult
How do we tell that a variable holds an array?
• Natural: when it is indexed somewhere in program
• What about this code?
$a[1] = 7; $b = $a; $c = $b; echo $c[1];

Assignments to arrays and array elements
• $a = $b; // … where $a is an array
• $a[1][2][3] = …
• $a[1][$b[$i]] = …

slide 9

Other Difficulties

Aliases (different names for same memory loc)
$a = 1; $b = 2; $b =& $a; $a=3; // $b==3, too!

Interprocedural analysis
• How to distinguish variables with the same name in

different instances of a recursive function?

What is the depth of this recursion?

slide 10

Modeling Function Calls

Call preparation
• Formal parameter ← actual argument

– Similar to assignment

• Local variables ← default values

Call return
• Reset local variables
• For pass-by-reference parameters,

actual argument ← formal parameter
– What if the formal parameter has an alias inside function?

• What about built-in PHP functions?
– Model them as returning Ω, set by-reference params to Ω

slide 11

Taint Analysis

Literal – always untainted
Variable holding user input – tainted
• Use data flow analysis to track propagation of

tainted values to other variables

A tainted variable can become untainted
• $a = <user input>; $a = array();
• Certain built-in PHP functions

– htmlentities(), htmlspecialchars() – what do they do?

slide 12

False Positives in Pixy

Dynamically initialized global variables
• When does this situation arise?
• Pixy conservatively treats them as tainted

Reading from files
• Pixy conservatively treats all files as tainted

Global arrays sanitized inside functions
• Pixy doesn’t track aliasing for arrays and array elements

Custom sanitization
• PhpNuke: remove double quotes from user-originated

inputs, output them as attributes of HTML tags – is this
safe? why?

slide 13

Wassermann-Su Approach

Focuses on SQL injection vulnerabilities
Soundness
• Tool is guaranteed to find all vulnerabilities
• Is Pixy sound?

Precision
• Models semantics of sanitization functions
• Models the structure of the SQL query into which

untrusted user inputs are fed
• How is this different from tools like Pixy?

slide 14

“Essence” of SQL Injection

Web app provides a template for the SQL query
Attack = any query in which user input changes
the intended structure of SQL query
Model strings as context-free grammars (CFG)
• Track non-terminals representing tainted input

Model string operations as language transducers
• Example: str_replace(“ ’ ’ “, “ ’ “, $input)

A matches any char except “ ’ “

slide 15

Phase One: Grammar Production

Generate annotated CFG representing set of
all query strings that program can generate

Direct:
data directly from users
(e.g., GET parameters)

Indirect:
second-order tainted
data (means what?)

slide 16

String Analysis + Taint Analysis

Convert program into
static single assignment
form, then into CFG
• Reflects data dependencies

Model PHP filters as
string transducers
• Some filters are more complex:

preg_replace(“/a([0-9]*)b/”,
“x\\1\\1y”, “a01ba3b”) produces “x0101yx33y”

Propagate taint annotations

slide 17

Phase Two: Checking Safety

Check whether the language represented by
CFG contains unsafe queries
• Is it syntactically contained in the language defined

by the application’s query template?

This non-terminal represents tainted input

For all sentences of the form σ1 GETUID σ2

derivable from query, GETUID is between quotes in
the position of an SQL string literal (means what?)

Safety check:
Does the language rooted in GETUID
contain unescaped quotes?

slide 18

Tainted Substrings as SQL Literals

Tainted substrings that cannot be syntactically
confined in any SQL query
• Any string with an odd # of unescaped quotes (why?)

Nonterminals that occur only in the syntactic
position of SQL string literals
• Can an unconfined string be derived from it?

Nonterminals that derive numeric literals only
Remaining nonterminals in literal position can
produce a non-numeric string outside quotes
• Probably an SQL injection vulnerability
• Test if it can derive DROP WHERE, --, etc.

slide 19

Taints in Non-Literal Positions

Remaining tainted nonterminals appear as non-
literals in SQL query generated by the application
• This is rare (why?)

All derivable strings should be proper SQL
statements
• Context-free language inclusion is undecidable
• Approximate by checking whether each derivable string

is also derivable from a nonterminal in the SQL grammar
– Variation on a standard algorithm

Evaluation

Testing on five real-world PHP applications
Discovered previously unknown vulnerabilities,
including non-trivial ones
• Vulnerability in e107 content management system:

a field is read from a user-modifiable cookie, used in
a query in a different file

21% false positive rate
• What are the sources of false positives?

slide 21

Example of a False Positive

	Static Detection of�Web Application Vulnerabilities
	Reading Assignment
	Pixy
	Example of Injection Vulnerabilities
	Main Static Analysis Issues
	Handling Imprecision
	Annotated Control-Flow Graph
	Data Flow Analysis in PHP
	Other Difficulties
	Modeling Function Calls
	Taint Analysis
	False Positives in Pixy
	Wassermann-Su Approach
	“Essence” of SQL Injection
	Phase One: Grammar Production
	String Analysis + Taint Analysis
	Phase Two: Checking Safety
	Tainted Substrings as SQL Literals
	Taints in Non-Literal Positions
	Evaluation
	Example of a False Positive

