
slide 1

Vitaly Shmatikov

CS 380S

Access Control
Information-Flow Security

slide 2

Reading Assignment

Lampson. “A Note on the Confinement Problem”
(CACM 1973).
Myers and Liskov. “A Decentralized Model for
Information Flow Control” (SOSP 1997).

slide 3

Access Control Model

Classic method for preventing “bad things” from
happening
Principal makes a request to access a resource
(object)
• Objects have owners
• Example: process tries to write into a file

Reference monitor permits or denies request
• Example: file permissions in Unix

slide 4

Rights and Actions

Access control matrix
• For each subject and object, lists subject’s rights

Subjects, objects, rights can be created…
• Example: new users, new files
• Creation of rights is sometimes called “delegation”

– Example: grant right R to subject S with respect to object O

…or deleted
Access control is undecidable (in general)
• In general, can’t determine if a given subject can get

a particular right with respect to a given object
– Harrison, Ruzzo, Ullman (1976)

slide 5

ACL: Access Control Lists

For each object, store a list of
(Subject x Rights) pairs
• Resolving queries is linear in the size of the list

Easy to answer “who can access this object?”
Easy to revoke rights to a single object
Lists can get long
When is authentication performed?
• If at every access, can be very expensive

slide 6

Capability Lists

For each subject, store a list of
(Object x Rights) pairs – called capabilities
• Capabilities should be unforgeable (why?)

Authentication takes place when capability is
granted
• Don’t need to check at every access

Revocation is harder (why?)

slide 7

Implementing Capabilities

Unique identifiers that map to objects
• Extra level of indirection to access an object
• Integrity of the map must be protected

Capabilities must be unforgeable
• Special hardware: tagged words in memory

– Can’t be copied or modified

• Store capabilities in protected address space
• Use static scoping in programming languages

– “Private” fields in Java

• Cryptography
– Shared keys; OS could digitally sign capabilities

slide 8

OS: Coarse-Grained Access Control

Enforce security properties at the system call
layer (what are the issues?)
Enforcement decisions are made at the level of
“large” objects
• Files, sockets, processes …

Coarse notion of subject / “principal”
• UID

slide 9

DAC vs. MAC

Discretionary access control (DAC)
• Individual user may, at his own discretion, determine

who is authorized to access the objects he creates
– Example: Unix files

Mandatory access control (MAC)
• Creator of an object does not necessarily have the

ability to determine who has authorized access to it
• Policy typically governed by a central authority
• Policy on an object depends on what object or

information was used to create it

slide 10

Multi-Level Security (Military)

Classification of personnel and data
• Class D = 〈rank, compartment〉

Dominance relation
• D1 ≤ D2 iff rank1 ≤ rank2 & compart1 compart2

– Example: 〈Restricted, Iraq〉 ≤ 〈Secret, CENTCOM〉

Subjects: users or processes
• Class(S) = clearance of S

Objects : documents or resources
• Class(O) = classification of O

slide 11

Bell-LaPadula Model

“No read up, no write down”
Principals are assigned clearance levels drawn
from a lattice of security labels
A principal may read objects with lower (or
equal) security label: C(O) ≤ C(S)
A principal may write objects with higher (or
equal) security label: C(S) ≤ C(O)
• Example: a user with Secret clearance can read

objects with Public and Secret labels, but can only
write objects with Secret label (why?)

• Integrity: “tainted” may not flow into “untainted”

slide 12

SELinux

Security-enhanced Linux system from NSA
MAC built into the OS kernel
• Each process has an associated domain
• Each object has an associated type (label)
• Configuration files specify how domains may access

types, interact, transition between domains

Role-based access control
• Each process has an associated role

– Separate system and user processes

• Configuration files specify the set of domains that may
be entered by each role

slide 13

Other MAC Policies

“Chinese Wall” [Brewer & Nash 1989]

• Object labels are classified into “conflict classes”
• If subject accesses an object with a particular label

from a conflict class, all accesses to objects labeled
with other labels from the conflict class are denied

• Policy changes dynamically

“Separation of Duties”
• Division of responsibilities among subjects

– Example: Bank auditor cannot issue checks

slide 14

Beyond Access Control

Finer-grained data confidentiality policies
• At the level of principals rather than hosts or processes

Security enforcement decisions at the level of
application abstractions
• User interface: access control at window level
• Mobile code: no network send after file read
• E-commerce: no goods until payment
• Make security policies part of the programming

language itself

End-to-end security: control propagation of
sensitive data after it has been accessed

slide 15

Confidentiality

Confidentiality via access control
• Only authorized processes can read a file
• When should a process be “authorized?”
• Encryption provides end-to-end confidentiality, but

it’s difficult to compute on encrypted data

End-to-end confidentiality
• Information should not be improperly released by a

computation no matter how it is used

slide 16

Integrity

Integrity via access control
• Only authorized processes can write a file
• When should a process be “authorized?”
• Digital signatures provide end-to-end integrity, but

cannot change signed data

End-to-end integrity
• Information should not be updated on the basis of

less trustworthy information

slide 17

Web Tax Example
[Myers]

slide 18

Information Channels

End-to-end security requires controlling
information channels [Lampson 1973]

Storage channels: transmit information explicitly
• Variable assignment, writing to sockets, files

Covert channels: transmit by mechanisms not
intended for transmitting information
• System load, locks …

Timing channels: transmit information by when
something happens (rather than what)

slide 19

Example of an Implicit Flow

boolean b := <secret>
if (b) {

x := true; f();
}

Information flow from b to x

slide 20

Non-Interference

Observable behavior of the program should not
depend on confidential data
• Example: private local data should not “interfere”

with network communications

Network

Disk

Accounting
software

[Goguen and Meseguer]

slide 21

Declassification

Non-interference is too strong
• Programs release confidential information as part of

normal operation
• "Alice will release her data after you pay her $10"

Idea: allow the program to release confidential
data, but only through a certain computation
Example: logging in using a secure password
if (password == input) login(); else fail();
• Information about password must be released

… but only through the result of comparison

slide 22

Principals

Principals are users, groups of users, etc.
Used to express fine-grained policies controlling
use of data
• Individual users and groups rather than hosts
• Closer to the semantics of data usage policies

Principal hierarchy generated by the acts-for
relation

slide 23

Data Labels

Label each piece of data to indicate permitted
information flows (both to and from)
• Label specifies a set of policies

Confidentiality constraints: who may read it?
• {Alice: Bob, Eve} label means that Alice owns this

data, and Bob and Eve are permitted to read it
• {Alice: Charles; Bob: Charles} label means that Alice

and Bob own this data but only Charles can read it

Integrity constraints: who may write it?
• {Alice ? Bob} label means that Alice owns this data,

and Bob is permitted to change it

[Myers and Liskov]

slide 24

Label Lattice

∪ join
⊆ order

{}

{Alice:Bob,Charles} {Alice: Bob,Eve}

{Alice:}

… …

T

… … … …

Labels higher in
the lattice are more

restrictive
{Alice:Bob}

… …
∪

Computation Changes Labels

Assignment (X=Y) relabels a variable
• For every policy in the label of Y, there must be a

policy in the label of X that is at least as restrictive

Combining values (when does this happen?)
• Join labels – move up in the lattice
• Label on data reflects all of its sources

Declassification
• A principal can rewrite its own part of the label

slide 25

slide 26

Web Tax Example
[Myers]

slide 27

Jif

Jif: Java with information flow control
Represent principals as Java classes
Jif augments Java types with labels
• int {Alice:Bob} x;
• Object {L} o;

Subtyping follows the ⊆ lattice order
Type inference
• Programmer may omit types; Jif will infer them from

how values are used in expressions

[Myers]

slide 28

Implicit Flows (1)

if (a > 0) then {
b = 4;

}

int{Alice:} a;
int{Bob:} b;
...

This assignment leaks
information contained in
program counter (PC)

{Alice:; Bob:}

{}

{Alice:} {Bob:}

PC label

{}

{}∪{Alice:}={Alice:}

{}

[Zdancewic]

slide 29

if (a > 0) then {
b = 4;

}

int{Alice:} a;
int{Bob:} b;
...

To assign to variable
with label X, must have
PC ⊆ X

{Alice:; Bob:}

{}

{Alice:} {Bob:}

PC label

{}

{}∪{Alice:}={Alice:}

{}

Implicit Flows (2)
[Zdancewic]

slide 30

Effects inside function
can leak information
about program counter

{Alice:; Bob:}

{}

{Alice:} {Bob:}

Function Calls

if (a > 0) then {
f(4);

}

int{Alice:} a;
int{Bob:} b;
...

PC label

{}

{}∪{Alice:}={Alice:}

{}

[Zdancewic]

slide 31

Method Types

Constrain labels before and after method call
• To call the method, need PC ⊆ B
• On return, should have PC ⊆ E

“where” clauses may be used to specify
authority (set of principals)

int{L1} method{B} (int{L2} arg) : {E}
where authority(Alice)

{
…

}

slide 32

Declassification

“downcast"
int{Alice:} to
int{Alice:Bob}

int{Alice:} a;
int Paid;
... // compute Paid
if (Paid==10) {

int{Alice:Bob} b = declassify(a, {Alice:Bob});
...

}

slide 33

int{Alice:} a;
int Paid;
... // compute Paid
if (Paid==10) {

int{Alice:Bob} b = declassify(a, {Alice:Bob});
...

}

Robust Declassification

Alice needs to trust
the contents of Paid

Introduces constraint
PC ⊆ {Alice?}

[Zdancewic and Myers]

Jif Caveats

No threads
• Information flow hard to control
• Active area of current research

Timing channels not controlled
• Explicit choice for practicality

Differences from Java
• Some exceptions are fatal
• Restricted access to some system calls

slide 34

	Access Control �Information-Flow Security
	Reading Assignment
	Access Control Model
	Rights and Actions
	ACL: Access Control Lists
	Capability Lists
	Implementing Capabilities
	OS: Coarse-Grained Access Control
	DAC vs. MAC
	Multi-Level Security (Military)
	Bell-LaPadula Model
	SELinux
	Other MAC Policies
	Beyond Access Control
	Confidentiality
	Integrity
	Web Tax Example
	Information Channels
	Example of an Implicit Flow
	Non-Interference
	Declassification
	Principals
	Data Labels
	Label Lattice
	Computation Changes Labels
	Web Tax Example
	Jif
	Implicit Flows (1)
	Implicit Flows (2)
	Function Calls
	Method Types
	Declassification
	Robust Declassification
	Jif Caveats

