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Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g
• p is a large prime number, g is a generator of Zp*

– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i  such that a=gi mod p
– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p
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Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem: 
given gx mod p, it’s hard to extract x
• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

Decisional Diffie-Hellman (DDH) problem: 
given gx and gy, it’s hard to tell the difference 
between gxy mod p and gr mod p where r is random
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DDH Assumption

G is a group of large prime order q
For g1,g2,u1,u2∈G  define

1  if ∃x∈Zq s.t. u1=g1
x, u2=g2

x

DHP(g1,g2,u1,u2) =
0  otherwise

Decisional Diffie-Hellman (DDH) Assumption says 
that there exists no efficient algorithm for 
computing DHP correctly with negligible error 
probability on all inputs
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Security of Diffie-Hellman Protocol

Assuming DDH problem is hard, Diffie-Hellman 
protocol is a secure key establishment protocol 
against passive attackers
• Eavesdropper can’t tell the difference between the 

established key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Basic Diffie-Hellman protocol does not provide 
authentication
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Public-Key Encryption

Key generation: computationally easy to generate 
a pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK 

given only public key PK

Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M)
Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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When Is a Cipher “Secure”?

Hard to recover the key?
• What if attacker can learn plaintext without learning 

the key?

Hard to recover plaintext from ciphertext?
• What if attacker learns some bits or some function of 

bits?

Fixed mapping from plaintexts to ciphertexts?
• What if attacker sees two identical ciphertexts and 

infers that the corresponding plaintexts are identical?
• Implication: encryption must be randomized or stateful
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How Can a Cipher Be Attacked?

Assume that the attacker knows the encryption 
algorithm and wants to decrypt some ciphertext
Main question: what else does the attacker know?
• Depends on the application in which cipher is used!
Ciphertext-only attack
Known-plaintext attack (stronger)
• Knows some plaintext-ciphertext pairs
Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of his choice
Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target
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The Chosen-Plaintext Game

Attacker does not know the key
He chooses as many plaintexts as he wants, and 
learns the corresponding ciphertexts
When ready, he picks two plaintexts M0 and M1
• He is even allowed to pick plaintexts for which he 

previously learned ciphertexts!

He receives either a ciphertext of M0, or a 
ciphertext of M1

He wins if he guesses correctly which one it is
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CPA Game: Formalization

Idea: attacker should not be able to learn 
even a single bit of the encrypted plaintext
Define Enc(M0,M1,b) to be a function that returns 
encrypted Mb
• Given two plaintexts, Enc returns a ciphertext of one or 

the other depending on the value of bit b
• Think of Enc as a magic box that computes ciphertexts 

on attacker’s demand.  He can obtain a ciphertext of 
any plaintext M by submitting M0=M1=M, or he can try 
to learn even more by submitting M0≠M1.

Attacker’s goal is to learn just one bit b

0 or 1
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Why Hide Everything?

Leaking even a little bit of information about the 
plaintext can be disastrous
Electronic voting
• 2 candidates on the ballot (1 bit to encode the vote)
• If ciphertext leaks the parity bit of the encrypted 

plaintext, eavesdropper learns the entire vote

D-Day: Pas-de-Calais or Normandy?
• Allies convinced Germans that invasion will take place 

at Pas-de-Calais
– Dummy landing craft, feed information to double spies

• Goal: hide a 1-bit secret
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Chosen-Plaintext Security

Consider two experiments (A is the attacker)
Experiment 0 Experiment 1

A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)
and outputs bit d and outputs bit d

• Identical except for the value of the secret bit

• d is attacker’s guess of the secret bit

Attacker’s advantage is defined as
| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |

Encryption scheme is chosen-plaintext secure if 
this advantage is negligible for any efficient A

If A “knows” secret bit, he 
should be able to make his 
output depend on it
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Simple Example

Any deterministic, stateless encryption scheme is 
insecure 
• Attacker can easily distinguish encryptions of different 

plaintexts from encryptions of identical plaintexts
Attacker A interacts with Enc(-,-,b)

Let X,Y be any two different plaintexts
C1 ← Enc(X,Y,b);   C2 ← Enc(Y,Y,b);
If C1=C2 then  b=1 else say b=0

The advantage of this attacker A is 1
Prob(A outputs 1 if b=0)=0    Prob(A outputs 1 if b=1)=1
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Semantic Security

Hide all partial information
Immune against attackers with a-priori 
knowledge about the plaintext
Equivalent to ciphertext indistinguishability
• It is infeasible to find two messages whose 

encryptions can be distinguished
• Chosen-plaintext security is equivalent to ciphertext 

indistinguishability under the chosen-plaintext attack

[Goldwasser and Micali  1982]



Beyond Semantic Security

Chosen-ciphertext security
• “Lunch-time” attack   [Naor and Yung  1990]

• Adaptive chosen-ciphertext security   [Rackoff and Simon  1991]

Non-malleability    [Dolev, Dwork, Naor  1991]

• Infeasible to create a “related” ciphertext
• Implies that an encrypted message cannot be modified 

without decrypting it
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ElGamal Encryption

Key generation
• Pick a large prime p, generator g of Z*p

• Private key: random x such that 1 ≤ x ≤ p-2
• Public key:  (p, g, y), where y = gx (mod p)

Encryption
• Pick random k, 1 ≤ k ≤ p-2
• E(m) = (γ,δ) = (gk mod p, m⋅yk mod p)

Decryption
• Given ciphertext (γ,δ), compute γ-x mod p
• Recover m = δ⋅(γ-x) mod p

slide 16



Semantic security of ElGamal encryption is 
equivalent to DDH
Given an oracle for breaking DDH, show that we 
can find two messages whose ElGamal 
ciphertexts can be distinguished
Given an oracle for distinguishing ElGamal 
ciphertexts, show that we can break DDH
• Given a triplet <ga, gb, Z>, we can decide whether 

Z=gab mod p  or  Z is random

Semantic Security of ElGamal
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DDH ⇒ ElGamal

Pick any two messages m0, m1

Receive E(m) = ga, m⋅ya 

• y = gx is the ElGamal public key

• To break ElGamal, must determine if m=m0 or m=m1

Run the DDH oracle on this triplet:

<ga,y⋅gv ,(m⋅ya)⋅gav/m0> = <ga,gx+v,m⋅g(x+v)a/m0>
• v is random

If this is a DH triplet, then m=m0, else m=m1

This breaks semantic security of ElGamal (why?)
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Suppose some algorithm A breaks ElGamal
• Given any public key, A produces plaintexts m0 and m1

whose encryptions it can distinguish with advantage Adv

We will use A to break DDH
• Decide, given (ga, gb, Z), whether Z=gab mod p or not

Give y=ga mod p to A as the public key 
A produces m0 and m1

We toss a coin for bit x and give A the ciphertext 
(gb, mx⋅Z)  mod p
• This is a valid ElGamal encryption of mx iff Z=gab mod p

ElGamal ⇒ DDH (1)
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A receives (gb, mx⋅Z)  mod p
• This is a valid ElGamal encryption of mx iff Z=gab mod p

A outputs his guess of bit x (why?)
If A guessed x correctly, we say that Z=gab mod p, 
otherwise we say that Z is random
What is our advantage in breaking DDH?
• If Z=gab mod p, we are correct with prob. Adv(A)  
• If Z is random, we are correct with prob. ½
• Our advantage in breaking DDH is Adv(A)/2

ElGamal ⇒ DDH (2)
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