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Motivation

General framework for describing computation 
between parties who do not trust each other
Example: elections
• N parties, each one has a “Yes” or “No” vote
• Goal: determine whether the majority voted “Yes”, but 

no voter should learn how other people voted

Example: auctions
• Each bidder makes an offer

– Offer should be committing! (can’t change it later)

• Goal: determine whose offer won without revealing 
losing offers
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More Examples

Example: distributed data mining
• Two companies want to compare their datasets without 

revealing them
– For example, compute the intersection of two lists of names

Example: database privacy
• Evaluate a query on the database without revealing the 

query to the database owner
• Evaluate a statistical query on the database without 

revealing the values of individual entries
• Many variations
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A Couple of Observations

In all cases, we are dealing with distributed 
multi-party protocols
• A protocol describes how parties are supposed to 

exchange messages on the network

All of these tasks can be easily computed by a 
trusted third party
• The goal of secure multi-party computation is to 

achieve the same result without involving a trusted 
third party
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How to Define Security?

Must be mathematically rigorous
Must capture all realistic attacks that a malicious 
participant may try to stage
Should be “abstract”
• Based on the desired “functionality” of the protocol, 

not a specific protocol
• Goal: define security for an entire class of protocols
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Functionality

K mutually distrustful parties want to jointly carry 
out some task
Model this task as a function

f: ({0,1}*)K →({0,1}*)K

Assume that this functionality is computable in 
probabilistic polynomial time

K inputs (one per party);
each input is a bitstring

K outputs
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Ideal Model

Intuitively, we want the protocol to behave “as if” 
a trusted third party collected the parties’ inputs 
and computed the desired functionality
• Computation in the ideal model is secure by definition!

A B
x1

f2(x1,x2)f1(x1,x2)

x2
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Slightly More Formally

A protocol is secure if it emulates an ideal setting 
where the parties hand their inputs to a “trusted 
party,” who locally computes the desired outputs 
and hands them back to the parties

[Goldreich-Micali-Wigderson  1987]

A B
x1

f2(x1,x2)f1(x1,x2)

x2
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Adversary Models

Some of protocol participants may be corrupt
• If all were honest, would not need secure multi-party 

computation

Semi-honest (aka passive; honest-but-curious)
• Follows protocol, but tries to learn more from received 

messages than he would learn in the ideal model

Malicious
• Deviates from the protocol in arbitrary ways, lies about 

his inputs, may quit at any point

For now, we will focus on semi-honest adversaries 
and two-party protocols
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Correctness and Security

How do we argue that the real protocol 
“emulates” the ideal protocol?
Correctness
• All honest participants should receive the correct 

result of evaluating function f
– Because a trusted third party would compute f correctly

Security
• All corrupt participants should learn no more from the 

protocol than what they would learn in ideal model
• What does corrupt participant learn in ideal model?

– His input (obviously) and the result of evaluating f
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Simulation

Corrupt participant’s view of the protocol = record 
of messages sent and received 
• In the ideal world, view consists simply of his input and 

the result of evaluating f

How to argue that real protocol does not leak 
more useful information than ideal-world view?
Key idea: simulation
• If real-world view (i.e., messages received in the real 

protocol) can be simulated with access only to the ideal-
world view, then real-world protocol is secure

• Simulation must be indistinguishable from real view
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Technicalities

Distance between probability distributions A and B 
over a common set X is 

½ * sumX(|Pr(A=x) – Pr(B=x)|)
Probability ensemble Ai is a set of discrete 
probability distributions
• Index i ranges over some set I

Function f(n) is negligible if it is asymptotically 
smaller than the inverse of any polynomial
∀ constant c ∃m such that |f(n)| < 1/nc ∀n>m
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Notions of Indistinguishability

Simplest: ensembles Ai and Bi are equal
Distribution ensembles Ai and Bi are statistically 
close if dist(Ai,Bi) is a negligible function of i
Distribution ensembles Ai and Bi are 
computationally indistinguishable (Ai ≈ Bi) if, for 
any probabilistic polynomial-time algorithm D, 
|Pr(D(Ai)=1) - Pr(D(Bi)=1)| is a negligible 
function of i
• No efficient algorithm can tell the difference between 

Ai and Bi except with a negligible probability
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SMC Definition (First Attempt)

Protocol for computing f(XA,XB) betw. A and B is 
secure if there exist efficient simulator algorithms 
SA and SB such that for all input pairs (xA,xB) …
Correctness: (yA,yB) ≈ f(xA,xB)
• Intuition: outputs received by honest parties are 

indistinguishable from the correct result of evaluating f

Security: viewA(real protocol) ≈ SA(xA,yA)
viewB(real protocol) ≈ SB(xB,yB)

• Intuition: a corrupt party’s view of the protocol can be 
simulated from its input and output

This definition does not work!  Why?
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Randomized Ideal Functionality

Consider a coin flipping functionality
f()=(b,-) where b is random bit

• f() flips a coin and tells A the result; B learns nothing

The following protocol “implements” f()
1. A chooses bit b randomly
2. A sends b to B
3. A outputs b

It is obviously insecure (why?)
Yet it is correct and simulatable according to our 
attempted definition (why?)
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SMC Definition

Protocol for computing f(XA,XB) betw. A and B is 
secure if there exist efficient simulator algorithms 
SA and SB such that for all input pairs (xA,xB) …
Correctness: (yA,yB) ≈ f(xA,xB)
Security: (viewA(real protocol), yB) ≈ (SA(xA,yA), yB)

(viewB(real protocol), yA) ≈ (SB(xB,yB), yA)
• Intuition: if a corrupt party’s view of the protocol is 

correlated with the honest party’s output, the simulator 
must be able to capture this correlation

Does this fix the problem with coin-flipping f?
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Oblivious Transfer (OT)

Fundamental SMC primitive

A B
b0, b1

bi

i = 0 or 1

• A inputs two bits, B inputs the index of one of A’s bits   
• B learns his chosen bit, A learns nothing

– A does not learn which bit B has chosen; B does not learn the 
value of the bit that he did not choose

• Generalizes to bitstrings, M instead of 2, etc.

[Rabin  1981]
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One-Way Trapdoor Functions

Intuition: one-way functions are easy to compute, 
but hard to invert (skip formal definition for now)
• We will be interested in one-way permutations

Intution: one-way trapdoor functions are one-way 
functions that are easy to invert given some extra 
information called the trapdoor
• Example: if n=pq where p and q are large primes and e 

is relatively prime to ϕ(n), fe,n(m) = me mod n is easy to 
compute, but it is believed to be hard to invert

• Given the trapdoor d s.t. de=1 mod ϕ(n), fe,n(m) is easy 
to invert because fe,n(m)d = (me)d = m mod n



slide 19

Hard-Core Predicates

Let f: S→S be a one-way function on some set S
B: S→{0,1} is a hard-core predicate for f if
• B(x) is easy to compute given x∈S
• If an algorithm, given only f(x), computes B(x) correctly 

with prob > ½+ε, it can be used to invert f(x) easily
– Consequence: B(x) is hard to compute given only f(x)

• Intuition: there is a bit of information about x s.t. 
learning this bit from f(x) is as hard as inverting f

Goldreich-Levin theorem
• B(x,r)=r•x is a hard-core predicate for g(x,r) = (f(x),r)

– f(x) is any one-way function, r•x=(r1x1) ⊕ … ⊕ (rnxn)
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Oblivious Transfer Protocol

Assume the existence of some family of one-way 
trapdoor permutations

A B

Chooses his input i (0 or 1)

Chooses random r0,1, x, ynot i
Computes yi = F(x)

Chooses a one-way permutation 
F and corresponding trapdoor T

F

r0, r1, y0, y1

b0⊕(r0•T(y0)), b1⊕(r1•T(y1))
Computes mi⊕(ri•x)

= (bi⊕(ri•T(yi)))⊕(ri•x)
= (bi⊕(ri•T(F(x))))⊕(ri•x) = bi
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y0 and y1 are uniformly random regardless of
A’s choice of permutation F (why?).

Therefore, A’s view is independent of B’s input i.

Proof of Security for B

A B
Chooses random r0,1, x, ynot i

Computes yi = F(x)

F

r0, r1, y0, y1

b0⊕(r0•T(y0)), b1⊕(r1•T(y1))
Computes mi⊕(ri•x)
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Proof of Security for A (Sketch)

Sim B
Random r0,1, x, ynot i

yi = F(x)

F

r0, r1, y0, y1

b0⊕(r0•T(y0)), b1⊕(r1•T(y1))

Need to build a simulator whose output is 
indistinguishable from B’s view of the protocol

Chooses random F,
random r0,1, x, ynot i

computes yi = F(x),
sets mi=bi⊕(ri•T(yi)),

random mnot i

Knows i and bi (why?)

The only difference between simulation and real protocol:
In simulation, mnot i is random (why?)
In real protocol, mnot i=bnot i⊕(rnot i•T(ynot i))
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Proof of Security for A (Cont’d)

Why is it computationally infeasible to distinguish 
random m and m’=b⊕(r•T(y))?
• b is some bit, r and y are random, T is the trapdoor of a 

one-way trapdoor permutation

(r•x) is a hard-core bit for g(x,r)=(F(x),r)
• This means that (r•x) is hard to compute given F(x)

If B can distinguish m and m’=b⊕(r•x’) given only 
y=F(x’), we obtain a contradiction with the fact 
that (r•x’) is a hard-core bit
• Proof omitted
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