
slide 1

Vitaly Shmatikov

CS 380S

Introduction to
Secure Multi-Party Computation

slide 2

Motivation

General framework for describing computation
between parties who do not trust each other
Example: elections
• N parties, each one has a “Yes” or “No” vote
• Goal: determine whether the majority voted “Yes”, but

no voter should learn how other people voted

Example: auctions
• Each bidder makes an offer

– Offer should be committing! (can’t change it later)

• Goal: determine whose offer won without revealing
losing offers

slide 3

More Examples

Example: distributed data mining
• Two companies want to compare their datasets without

revealing them
– For example, compute the intersection of two lists of names

Example: database privacy
• Evaluate a query on the database without revealing the

query to the database owner
• Evaluate a statistical query on the database without

revealing the values of individual entries
• Many variations

slide 4

A Couple of Observations

In all cases, we are dealing with distributed
multi-party protocols
• A protocol describes how parties are supposed to

exchange messages on the network

All of these tasks can be easily computed by a
trusted third party
• The goal of secure multi-party computation is to

achieve the same result without involving a trusted
third party

slide 5

How to Define Security?

Must be mathematically rigorous
Must capture all realistic attacks that a malicious
participant may try to stage
Should be “abstract”
• Based on the desired “functionality” of the protocol,

not a specific protocol
• Goal: define security for an entire class of protocols

slide 6

Functionality

K mutually distrustful parties want to jointly carry
out some task
Model this task as a function

f: ({0,1}*)K →({0,1}*)K

Assume that this functionality is computable in
probabilistic polynomial time

K inputs (one per party);
each input is a bitstring

K outputs

slide 7

Ideal Model

Intuitively, we want the protocol to behave “as if”
a trusted third party collected the parties’ inputs
and computed the desired functionality
• Computation in the ideal model is secure by definition!

A B
x1

f2(x1,x2)f1(x1,x2)

x2

slide 8

Slightly More Formally

A protocol is secure if it emulates an ideal setting
where the parties hand their inputs to a “trusted
party,” who locally computes the desired outputs
and hands them back to the parties

[Goldreich-Micali-Wigderson 1987]

A B
x1

f2(x1,x2)f1(x1,x2)

x2

slide 9

Adversary Models

Some of protocol participants may be corrupt
• If all were honest, would not need secure multi-party

computation

Semi-honest (aka passive; honest-but-curious)
• Follows protocol, but tries to learn more from received

messages than he would learn in the ideal model

Malicious
• Deviates from the protocol in arbitrary ways, lies about

his inputs, may quit at any point

For now, we will focus on semi-honest adversaries
and two-party protocols

slide 10

Correctness and Security

How do we argue that the real protocol
“emulates” the ideal protocol?
Correctness
• All honest participants should receive the correct

result of evaluating function f
– Because a trusted third party would compute f correctly

Security
• All corrupt participants should learn no more from the

protocol than what they would learn in ideal model
• What does corrupt participant learn in ideal model?

– His input (obviously) and the result of evaluating f

slide 11

Simulation

Corrupt participant’s view of the protocol = record
of messages sent and received
• In the ideal world, view consists simply of his input and

the result of evaluating f

How to argue that real protocol does not leak
more useful information than ideal-world view?
Key idea: simulation
• If real-world view (i.e., messages received in the real

protocol) can be simulated with access only to the ideal-
world view, then real-world protocol is secure

• Simulation must be indistinguishable from real view

slide 12

Technicalities

Distance between probability distributions A and B
over a common set X is

½ * sumX(|Pr(A=x) – Pr(B=x)|)
Probability ensemble Ai is a set of discrete
probability distributions
• Index i ranges over some set I

Function f(n) is negligible if it is asymptotically
smaller than the inverse of any polynomial
∀ constant c ∃m such that |f(n)| < 1/nc ∀n>m

slide 13

Notions of Indistinguishability

Simplest: ensembles Ai and Bi are equal
Distribution ensembles Ai and Bi are statistically
close if dist(Ai,Bi) is a negligible function of i
Distribution ensembles Ai and Bi are
computationally indistinguishable (Ai ≈ Bi) if, for
any probabilistic polynomial-time algorithm D,
|Pr(D(Ai)=1) - Pr(D(Bi)=1)| is a negligible
function of i
• No efficient algorithm can tell the difference between

Ai and Bi except with a negligible probability

slide 14

SMC Definition (First Attempt)

Protocol for computing f(XA,XB) betw. A and B is
secure if there exist efficient simulator algorithms
SA and SB such that for all input pairs (xA,xB) …
Correctness: (yA,yB) ≈ f(xA,xB)
• Intuition: outputs received by honest parties are

indistinguishable from the correct result of evaluating f

Security: viewA(real protocol) ≈ SA(xA,yA)
viewB(real protocol) ≈ SB(xB,yB)

• Intuition: a corrupt party’s view of the protocol can be
simulated from its input and output

This definition does not work! Why?

slide 15

Randomized Ideal Functionality

Consider a coin flipping functionality
f()=(b,-) where b is random bit

• f() flips a coin and tells A the result; B learns nothing

The following protocol “implements” f()
1. A chooses bit b randomly
2. A sends b to B
3. A outputs b

It is obviously insecure (why?)
Yet it is correct and simulatable according to our
attempted definition (why?)

slide 16

SMC Definition

Protocol for computing f(XA,XB) betw. A and B is
secure if there exist efficient simulator algorithms
SA and SB such that for all input pairs (xA,xB) …
Correctness: (yA,yB) ≈ f(xA,xB)
Security: (viewA(real protocol), yB) ≈ (SA(xA,yA), yB)

(viewB(real protocol), yA) ≈ (SB(xB,yB), yA)
• Intuition: if a corrupt party’s view of the protocol is

correlated with the honest party’s output, the simulator
must be able to capture this correlation

Does this fix the problem with coin-flipping f?

slide 17

Oblivious Transfer (OT)

Fundamental SMC primitive

A B
b0, b1

bi

i = 0 or 1

• A inputs two bits, B inputs the index of one of A’s bits
• B learns his chosen bit, A learns nothing

– A does not learn which bit B has chosen; B does not learn the
value of the bit that he did not choose

• Generalizes to bitstrings, M instead of 2, etc.

[Rabin 1981]

slide 18

One-Way Trapdoor Functions

Intuition: one-way functions are easy to compute,
but hard to invert (skip formal definition for now)
• We will be interested in one-way permutations

Intution: one-way trapdoor functions are one-way
functions that are easy to invert given some extra
information called the trapdoor
• Example: if n=pq where p and q are large primes and e

is relatively prime to ϕ(n), fe,n(m) = me mod n is easy to
compute, but it is believed to be hard to invert

• Given the trapdoor d s.t. de=1 mod ϕ(n), fe,n(m) is easy
to invert because fe,n(m)d = (me)d = m mod n

slide 19

Hard-Core Predicates

Let f: S→S be a one-way function on some set S
B: S→{0,1} is a hard-core predicate for f if
• B(x) is easy to compute given x∈S
• If an algorithm, given only f(x), computes B(x) correctly

with prob > ½+ε, it can be used to invert f(x) easily
– Consequence: B(x) is hard to compute given only f(x)

• Intuition: there is a bit of information about x s.t.
learning this bit from f(x) is as hard as inverting f

Goldreich-Levin theorem
• B(x,r)=r•x is a hard-core predicate for g(x,r) = (f(x),r)

– f(x) is any one-way function, r•x=(r1x1) ⊕ … ⊕ (rnxn)

slide 20

Oblivious Transfer Protocol

Assume the existence of some family of one-way
trapdoor permutations

A B

Chooses his input i (0 or 1)

Chooses random r0,1, x, ynot i
Computes yi = F(x)

Chooses a one-way permutation
F and corresponding trapdoor T

F

r0, r1, y0, y1

b0⊕(r0•T(y0)), b1⊕(r1•T(y1))
Computes mi⊕(ri•x)

= (bi⊕(ri•T(yi)))⊕(ri•x)
= (bi⊕(ri•T(F(x))))⊕(ri•x) = bi

slide 21

y0 and y1 are uniformly random regardless of
A’s choice of permutation F (why?).

Therefore, A’s view is independent of B’s input i.

Proof of Security for B

A B
Chooses random r0,1, x, ynot i

Computes yi = F(x)

F

r0, r1, y0, y1

b0⊕(r0•T(y0)), b1⊕(r1•T(y1))
Computes mi⊕(ri•x)

slide 22

Proof of Security for A (Sketch)

Sim B
Random r0,1, x, ynot i

yi = F(x)

F

r0, r1, y0, y1

b0⊕(r0•T(y0)), b1⊕(r1•T(y1))

Need to build a simulator whose output is
indistinguishable from B’s view of the protocol

Chooses random F,
random r0,1, x, ynot i

computes yi = F(x),
sets mi=bi⊕(ri•T(yi)),

random mnot i

Knows i and bi (why?)

The only difference between simulation and real protocol:
In simulation, mnot i is random (why?)
In real protocol, mnot i=bnot i⊕(rnot i•T(ynot i))

slide 23

Proof of Security for A (Cont’d)

Why is it computationally infeasible to distinguish
random m and m’=b⊕(r•T(y))?
• b is some bit, r and y are random, T is the trapdoor of a

one-way trapdoor permutation

(r•x) is a hard-core bit for g(x,r)=(F(x),r)
• This means that (r•x) is hard to compute given F(x)

If B can distinguish m and m’=b⊕(r•x’) given only
y=F(x’), we obtain a contradiction with the fact
that (r•x’) is a hard-core bit
• Proof omitted

	Introduction to� Secure Multi-Party Computation
	Motivation
	More Examples
	A Couple of Observations
	How to Define Security?
	Functionality
	Ideal Model
	Slightly More Formally
	Adversary Models
	Correctness and Security
	Simulation
	Technicalities
	Notions of Indistinguishability
	SMC Definition (First Attempt)
	Randomized Ideal Functionality
	SMC Definition
	Oblivious Transfer (OT)	
	One-Way Trapdoor Functions
	Hard-Core Predicates
	Oblivious Transfer Protocol
	Proof of Security for B
	Proof of Security for A (Sketch)
	Proof of Security for A (Cont’d)

