CS 380S

Introduction to Zero-Knowledge

Vitaly Shmatikov

Commitment

Temporarily hide a value, but ensure that it cannot be changed later

- Example: sealed bid at an auction
- ◆1st stage: commit
 - Sender electronically "locks" a message in a box and sends the box to the Receiver
- ◆2nd stage: reveal
 - Sender proves to the Receiver that a certain message is contained in the box

Properties of Commitment Schemes

Commitment must be hiding

- At the end of the 1st stage, no adversarial receiver learns information about the committed value
- If receiver is probabilistic polynomial-time, then <u>computationally</u> hiding; if receiver has unlimited computational power, then <u>perfectly</u> hiding

Commitment must be binding

- At the end of the 2nd stage, there is only one value that an adversarial sender can successfully "reveal"
- Perfectly binding vs. computationally binding

Can a scheme be perfectly hiding and binding?

Discrete Logarithm Problem

- Intuitively: given g^x mod p where p is a large prime, it is "difficult" to learn x
 - Difficult = there is no known polynomial-time algorithm

\blacklozenge g is a generator of a multiplicative group Z_{p}^{*}

- Fermat's Little Theorem
 - For any integer a and any prime p, $a^{p-1}=1 \mod p$.
- g⁰, g¹ ... g^{p-2} mod p is a sequence of distinct numbers, in which every integer between 1 and p-1 occurs once

- For any number $y \in [1 \dots p-1]$, $\exists x \text{ s.t. } g^x = y \mod p$

• If $g^q=1$ for some q>0, then g is a generator of $Z_{q'}$ an order-q subgroup of Z_{p}^*

Pedersen Commitment Scheme

Setup: receiver chooses...

- Large primes p and q such that q divides p-1
- Generator g of the order-q subgroup of Z_p^*
- Random secret a from Z_q
- h=g^a mod p
 - Values p,q,g,h are public, a is secret

♦ Commit: to commit to some $x \in Z_q$, sender chooses random $r \in Z_q$ and sends $c = g^x h^r \mod p$ to receiver

• This is simply $g^{x}(g^{a})^{r}=g^{x+ar} \mod p$

Reveal: to open the commitment, sender reveals x and r, receiver verifies that c=g^xh^r mod p

Security of Pedersen Commitments

Perfectly hiding

- Given commitment c, every value x is equally likely to be the value commited in c
- Given x, r and any x', exists r' such that $g^{x}h^{r} = g^{x'}h^{r'}$ r' = (x-x')a⁻¹ + r mod q (but must know a to compute r')

Computationally binding

- If sender can find different x and x' both of which open commitment c=g^xh^r, then he can solve discrete log
 - Suppose sender knows x_r, x', r' s.t. $g^x h^r = g^{x'} h^{r'} \mod p$
 - Because $h=g^a \mod p$, this means $x+ar = x'+ar' \mod q$
 - Sender can compute a as (x'-x)(r-r')-1
 - But this means sender computed discrete logarithm of h!

Zero-Knowledge Proofs

- An interactive proof system involves a prover and a verifier
- Idea: the prover proves a statement to the verifier without revealing anything except the fact that the statement is true
 - Zero-knowledge proof of knowledge (ZKPK): prover convinces verifier that he knows a secret without revealing the secret

Ideal functionality ③

Properties of ZKPK

Completeness

• If both prover and verifier are honest, protocol succeeds with overwhelming probability

Soundness

- No one who does <u>not</u> know the secret can convince the verifier with nonnegligible probability
 - Intuition: the protocol should not enable prover to prove a false statement

Zero knowledge

• The proof does not leak any information

Zero-Knowledge Property

The proof does not leak any information

- There exists a simulator that, taking what the verifier knows before the protocol starts, produces a fake "transcript" of protocol messages that is indistinguishable from actual protocol messages
 - Because all messages can be simulated from verifier's initial knowledge, verifier does not learn anything that he didn't know before
 - Indistinguishability: perfect, statistical, or computational
- Honest-verifier ZK only considers verifiers that follow the protocol

Soundness Property

- No one who does <u>not</u> know the secret can convince the verifier with nonnegligible probability
 Let A be any prover who convinces the verifier...
 ...there must exist a knowledge extractor algorithm that, given A, extracts the secret from A
 - Intuition: if there existed some prover A who manages to convince the verifier that he knows the secret without actually knowing it, then no algorithm could possibly extract the secret from this A

Schnorr's Id Protocol

System parameters

- Prime p and q such that q divides p-1
- g is a generator of an order-q subgroup of Z_p*

Cheating Sender

Prover can cheat if he can guess c in advance

- Guess c, set x=g^yt^{-c} for random y in 1st message
- What is the probability of guessing c?

P proves that he "knows" discrete log of t even though he does not know s

Schnorr's Id Protocol Is Sound

Given P who successfully passes the protocol, extract s such that t=g^s mod p

Knows t

• Idea: run P twice as a subroutine

Schnorr's Id Protocol Is HVZK

Simulator produces a transcript which is indistinguishable from the real transcript

Schnorr's Id Protocol Is Not ZK

Schnorr's ID protocol is <u>not</u> zero-knowledge for malicious verifier if challenge c is large

Verifier may not be able to come up with such a triple on his own. Therefore, he learned something from the protocol (protocol is not zero-knowledge!)