
slide 1

Vitaly Shmatikov

CS 380S

Oblivious Transfer and
Secure Multi-Party Computation

With Malicious Parties

slide 2

Reminder: Oblivious Transfer

A B
b0, b1

bi

i = 0 or 1

• A inputs two bits, B inputs the index of one of A’s bits
• B learns his chosen bit, A learns nothing

– A does not learn which bit B has chosen
– B does not learn the value of the bit that he did not choose

• Generalizes to bitstrings, M instead of 2, etc.

slide 3

Reminder: Semi-Honest OT Protocol

Assume the existence of some family of one-way
trapdoor permutations

A B

Chooses his input i (0 or 1)

Chooses random x, ynot i
Computes yi=F(x)

Chooses a one-way permutation F;
T is a trapdoor, H is the hard-core bit of F

F

y0, y1

b0⊕H(T(y0)), b1⊕H(T(y1))
Computes bi=mi⊕H(x)

How do we force malicious B to follow
the protocol and pick ynot i randomly?

slide 4

OT With Malicious Parties (Attempt)

A B

Chooses his input i (0 or 1)

Picks random x
Sets yi=F(x)
Sets ynot i=y’⊕y’’

Chooses a one-way permutation F;
T is a trapdoor, H is the hard-core bit of F

F, y’’

y0, y1

b0⊕H(T(y0)), b1⊕H(T(y1))
Computes bi=mi⊕H(x)

Picks random y’Commit(y’)
Picks random y’’

c

ZK proof that ∃ i s.t. c=commit(ynot i⊕y’’)
m0

m1

slide 5

Proving Security for Chooser

Chooser in this protocol gives out much more
information than in the original protocol
• Commitment to a random value
• ZK proof that he used this value in computing ynot i

To prove security for Chooser, construct a
simulator for Sender’s view (details omitted)
• Main idea: distribution of {c,y0,y1} is independent of

the bit i indicating Chooser’s choice
• Intuition: commitment c hides all information about y’
• Intuition: Chooser’s proof is zero-knowledge, thus

there exists a simulator for Sender’s view of the proof

slide 6

Proof of Sender Security (Attempt)

Sim
Cheating

B
F, y’’
y0, y1

bi⊕H(T(yi)), random mnot i

c
Pick random F, y’’

mi

Simulating malicious Chooser’s view of protocol

Ideal OT
functionality

bi

B’s input bit i

ZK proof that, for some j,
c=commit(y’), ynot j=y’⊕y’’

What if B cheated and used a different bit j in real protocol?!

B will detect the difference between
real protocol and simulation if i≠j

B’s input bit i

Sim must extract
bit j that B is using
as his real choice

slide 7

Extracting Chooser’s Bit (Sketch!)

Sim
Cheating

B
F, y’’
y0, y1

bk⊕H(T(zk)), random mnot k

c
Pick random F, y’’

mk

Ideal OT
functionality

bk

B’s input bit i B’s input bit i

rewind B
F, z’’
z0, z1

One of y0,y1 is equal to y’⊕y’’
One of z0,z1 is equal to y’⊕z’’

There is a unique pair of bits (j,k)
such that ynot j⊕y’’ = znot k⊕z’’ = y’
Simulator learns k!

ZK proof that, for some j,
c=commit(y’), ynot j=y’⊕y’’

ZK proof that, for some k,
c=commit(y’), znot k=y’⊕z’’

Must be same y’ because
commitment is binding

slide 8

ZK proof that ∃ i s.t. c=commit(ynot i⊕y’’)

So, Is This Protocol Secure?

A B

Chooses his input i (0 or 1)

Picks random x
Sets yi=F(x)
Sets ynot i=y’⊕y’’

Chooses a one-way permutation F;
T is a trapdoor, H is the hard-core bit of F

F, y’’

y0, y1

b0⊕H(T(y0)), b1⊕H(T(y1))
Computes bi=mi⊕H(x)

Picks random y’Commit(y’)
Picks random y’’

c

m0
m1

slide 9

ZK proof that ∃ i s.t. c=commit(ynot i⊕y’’)

Oops!

A

Chooses his input i (0 or 1)

Picks random x
Sets yi=y’⊕y’’
Sets ynot i=y’⊕y’’

Chooses a one-way permutation F;
T is a trapdoor, H is the hard-core bit of F

F, y’’

y0, y1

b0⊕H(T(y)), b1⊕H(T(y))

Picks random y’Commit(y’)
Picks random y’’

c

This is true, so
proof passes!

Note that
y0=y1=y

If these values are the same, B learns that b0 = b1
Would he be able to learn this in the ideal world?

This proof is NOT enough
for security against
malicious chooser

Cheating

B

slide 10

OT Protocol with Malicious Parties

A B

Chooses his input i (0 or 1)

Picks random x
Sets yi = F(x)
Sets ynot i=y’⊕y’’

Chooses a one-way permutation F;
T is a trapdoor, H is the hard-core bit of F

F, y’’

y0, y1

b0⊕H(T(y0)), b1⊕H(T(y1))
Computes bi=mi⊕H(x)

Picks random y’Commit(y’)
Picks random y’’

c

ZKPK(y’,x,i) s.t. c=commit(y’), yi=F(x), ynot i=y’⊕y’’

B proves that he
executed previous

steps correctly

m0 m1
Can A learn y’, x or i

from this proof?

slide 11

Proving Sender Security

Sim
Cheating

B
F, y’’
y0, y1

bi⊕H(T(yi)), random mnot i

c
Pick random F, y’’

mi

Simulating malicious Chooser’s view of protocol

bi

ZKPK(y’,x,i) such that
c=commit(y’), yi=F(x), ynot i=y’⊕y’’

Because this is a ZK proof of
knowledge, there is an extractor
that allows simulator to extract y’, x and i
(but ZKPK proof system must be secure
against a malicious verifier – why?)

Ideal OT
functionality

slide 12

Naor-Pinkas Oblivious Transfer

S C

Choice: bit σ

Chooses random k
Sets PKσ=gk, PK1-σ=C/PKσ

C

PK0

gr, m0⊕Hash((PK0)r,0), m1⊕Hash((PK1)r,1)

Computes (gr)k = (PKσ)r and
decrypts mσ

Messages m0 and m1

Chooser does not
know discrete log of C

Setting: order-q subgroup of Z*p, p is prime, q divides p-1
g is a generator group for which CDH assumption holds

Chooses random r,
computes PK1

Chooser knows discrete log
either for PK0, or for PK1, but not both

Chooser does not know the discrete log of PK1-σ, thus cannot
distinguish between a random value gz and (PK1-σ)r - why?

slide 13

1-out-of-4 Oblivious Transfer

A B
b1,b2,b3,b4

bi

i=1,2,3 or 4

• Very similar to 1-out-of-2 oblivious transfer
• How to construct a 1-out-of-4 OT protocol given an 1-out-

of-2 protocol?

slide 14

Boolean Circuits

Alice and Bob want to compute function f(a,b)
• Assume for now Alice and Bob are semi-honest

First, convert the function into a boolean circuit

Next, parties securely share their inputs

AND OR

AND

NOT

OR

AND
Alice’s inputs

x1 … xn

Bob’s inputs
xn+1 … x2n

slide 15

Input Sharing

A B
Random r1 … rn

Let bi=ri

After this exchange, for all inputs xi …

xi= ai⊕bi
• Alice still doesn’t know Bob’s inputs, and vice versa

• This is information-theoretically secure

Knows x1 … xn Knows xn+1 … x2n

Let ai= xi⊕ri for 1≤i≤n

Random rn+1 … r2n

Let ai=ri for n+1≤i≤2n Let bi=xi⊕ri

slide 16

Evaluating an AND Gate

• Inputs x1 and x2 are shared between Alice and Bob
– x1=a1⊕b1 , x2=a2⊕b2

• At the end of the protocol, Alice learns bit c1 and Bob
learns bit c2 such that…

– Bits c1,2 are “random”
– c1⊕c2 = x1∧x2 = (a1⊕b1)∧(a2⊕b2)

• Output of the gate is shared between A and B just like the inputs

AND
x1

z

Alice Bob
x2

Knows a1, a2 Knows b1, b2

c1 c2

slide 17

Use Oblivious Transfer

A B
c1⊕(a1∧a2)

c2

• In every case, c1⊕c2 = (a1⊕b1)∧(a2⊕b2) = x1∧x2

• Can use similar tricks for other gate types
• Why do I give the ideal functionality only, not the actual

protocol?

Pick random c1

c1⊕(a1∧a2)
c1⊕(a1∧a2)
c1⊕(a1∧a2)

1 if b1=b2=0
2 if b1=1, b2=0
3 if b1=0, b2=1
4 if b1=b2=1

slide 18

Is Secure OT Enough?

We saw an oblivious transfer protocol which is
secure even if parties are malicious
• Chooser commits to his input and proves in zero

knowledge that he performed his computations correctly

Suppose each gate of the circuit is evaluated using
an oblivious transfer protocol which is secure with
malicious parties…
Do we obtain a protocol for securely computing
any function with malicious parties?

slide 19

Oops!

When output of Gate 1 is used as input into Gate 2,
both parties must use the same pair of bits that was
obtained from evaluating Gate 1 (why?)

Gate 1
x1Alice Bob

x2

c1 c2

Gate 2

c2

c1

The input bit on each wire is
shared between Alice and Bob

slide 20

Security with Malicious Parties

Details omitted (this is less than a sketch!)
Intuition: every party commits to its inputs and
proves in ZK that it did its computation correctly
• This includes proving that output of one OT protocol is

consistent with input of another OT protocol

Main advantage: secure building blocks compose
into secure protocols
• Each building block (commitment, OT, etc.) is

indistinguishable from its ideal functionality (IF)
• IFs can be composed without comprosiming security
• Can build a secure protocol from secure primitives

slide 21

Issues

Parallel composition of zero-knowledge proofs
does not work in general
• One proof is zero-knowledge, but two proofs executed

concurrently are no longer zero-knowledge

How can cryptographic primitives be formulated
as secure multi-party problems?
• Many protocols use encryption, digital signatures, etc.

Adaptive corruptions: adversary may corrupt an
honest party in the middle of protocol execution
• Proofs with “rewinding” don’t work any more (why?)

slide 22

ZKPK of Discrete Log

Suppose we have some ZK protocol Π for proving
knowledge of discrete log

Here is another protocol Π’
P V

V

Tries to guess w

Π

P

1 if guessed correctly
Probability of this is negligible

Run Π with V as prover
If convinced, send w

0 if guessed incorrectly

Run Π with P as prover

Π’ is a sound zero-knowledge protocol of discrete-log knowledge (why?)

Knows w s.t. gw=u Knows u

Knows w
s.t. gw=u

Knows u

It’s important that
w is unique (why?)

slide 23

This protocol is clearly NOT zero-knowledge (why?)

Concurrent Composition

V runs two instances of protocol Π’ in parallel

VReplays P2’s messages to P1

and P1’s messages to P2

P1

1 (i.e., “I know w”)

Effectively, P2 who knows w convinced P1,
but P1 thinks he was convinced by V

Run Π with V as prover

Convinced!

Run Π with P2 as prover

Knows w
s.t. gw=u

Knows u

P2

Knows w
s.t. gw=u0 (i.e., “I don’t know w”)

w

Cheating verifier learns w!

slide 24

SMC In This Course

This is how much
we cover in this class

slide 25

To Learn More

	�Oblivious Transfer and �Secure Multi-Party Computation �With Malicious Parties
	Reminder: Oblivious Transfer
	Reminder: Semi-Honest OT Protocol
	OT With Malicious Parties (Attempt)
	Proving Security for Chooser
	Proof of Sender Security (Attempt)
	Extracting Chooser’s Bit (Sketch!)
	So, Is This Protocol Secure?
	Oops!
	OT Protocol with Malicious Parties
	Proving Sender Security
	Naor-Pinkas Oblivious Transfer
	1-out-of-4 Oblivious Transfer
	Boolean Circuits
	Input Sharing
	Evaluating an AND Gate
	Use Oblivious Transfer
	Is Secure OT Enough?
	Oops!
	Security with Malicious Parties
	Issues
	ZKPK of Discrete Log
	Concurrent Composition
	SMC In This Course
	To Learn More

