

Query Auditing

Vitaly Shmatikov

Reading Assignment

医生物 网络小学生 化化学学 化乙烯基化 医小学的 化合金 医白喉 医白喉 医白色 化化学学 化乙烯基化 化乙烯基化 化乙烯基化

Read Kenthapadi, Mishra, Nissim. "Simulatable Auditing" (PODS 2005).

Query Audit Problem

Maintaining "privacy" of data

Variations of the Problem

Offline vs. Online

Offline auditing

- Given a collection of queries and answers to them, check whether anything "forbidden" was revealed
- Detects privacy breaches after the fact

Online auditing

- Queries are presented to auditor one at a time; auditor checks if answering the current query (in combination with past answers) reveals "forbidden" information
- Prevents privacy breaches on-the-fly
- Is there a difference?

Auditing Sum Queries on Booleans

Database: collection of secret Boolean variables

- Query: specifies subset S of variables
- Answer: sum of variables in S
- Privacy breach: after asking several queries, user learns the value of some secret variable(s)

Auditing problem: given a set of Boolean equations, is there a variable that has the same value in all solutions?

• Weaker version: does system have a unique solution?

Why Is This Interesting?

Query can be safe on real-valued, unbounded data, but reveal information when the data are discrete, with known bounds

$$x + y + w = 1$$

y + z = 1
x + z = 1

Real: multiple solutions, secure Boolean: unique solution, insecure (why?)

Issues with Bounded Data

Traditional query auditing: does the given set of queries compromise security for <u>some</u> values of the variables?

• ... as opposed to their actual values in the database

With bounded data, the answer is always Yes

- "Sum of subset" Boolean query always reveals whether variables are all equal to 1
 - For example, if subset = $\{x,y\}$, then the fact that x+y=2 will reveal that x=y=1

 This suggests that auditor should consider actual values in the database

Approximate Auditing

- For a query set, answer only when it is safe; otherwise deny query
 - Conservative: a safe query may be denied
- ◆ Given Boolean variables x₁ ... x_n and query sets S₁ ... S_m, let trace of x_i T(x_i) = { p: x_i ∈ S_p }
 ◆ Theorem [KPR]: If for every variable x_i, there is a variable x_j s.t. x_i = 1-x_j and T(x_i)=T(x_j), then no variable is revealed by answers to S₁ ... S_m
 - Intuition: if values of x_i and x_j were switched, the answers to queries would have been the same

Max Queries on Reals

Database: collection of real-valued variables

- Query: specifies subset S of variables
- Answer: maximum over variables in S
- Privacy breach: after asking several queries, user learns the value of some secret variable(s)

Auditing Max Queries

◆Define $m_i = min_S \{ max(S_p) : i \in S_p \}$

- Suppose $S_1 = \{1,2\}, max(S_1) = 9; S_2 = \{1,3\}, max(S_2) = 4$
- Then m₁=max(S₂)
- Intuition: among all queries that include variable y_i , m_i is the query that gives the minimum answer
 - Call this query i-extreme

◆Theorem [KPR]: The value of a variable i is determined if and only if there exists a query S_p that is i-extreme but is not l-extreme for any l≠i

 Intuition: y_i≤m_i (by definition). If S_p is i-extreme but not l-extreme, then for all variables l, y_l<m_i, so y_i=m_i

Auditing in a Nutshell

Nissim's Example: Sum/Max

Variables d_i are real, privacy breached if adversary learns some d_i

Nissim's Example: Intervals

♦ $d_i \in [0,100]$, privacy breached if adversary learns some $d_i \pm 1$

Sounds Familiar?

[slide stolen from Kobbi Nissim] Colonel Oliver North, on the Iran-Contra arms deal

"On the advice of my counsel I respectfully and regretfully decline to answer the question based on my constitutional rights."

David Duncan, former auditor for Enron and partner in Arthur Andersen

"Mr. Chairman, I would like to answer the committee's questions, but on the advice of my counsel I respectfully decline to answer the question based on the protection afforded me under the Constitution of the United States."

Two Problems

Obvious problem: denied queries ignored

- Algorithmic problem: not clear how to incorporate denials in the audit decision
- Subtle problem: denials leak information!

When Do Denials NOT Leak Info?

An auditor is simulatable if there exists a <u>simulator</u> such that...

Simulatable Auditing

 q_{i+1} denied/allowed

Summary

Auditing decisions can leak information

- Denials can reveal sensitive data!
- Simulatable auditors provably don't leak information about actual data values
- There are many alternatives to query auditing
 - Add random noise to data and/or perturb answers
 - Cryptographic techniques such as secure multi-party computation