

Privacy-Preserving Data Mining

Vitaly Shmatikov

Reading Assignment

- Evfimievski, Gehrke, Srikant. "Limiting Privacy Breaches in Privacy-Preserving Data Mining" (PODS 2003).
- Blum, Dwork, McSherry, and Nissim. "Practical Privacy: The SuLQ Framework" (PODS 2005).

Input Perturbation

Reveal entire database, but randomize entries

For example, if distribution of noise has mean 0, user can compute average of x_i

Output Perturbation

Randomize response to each query

Concepts of Privacy

Weak: no single database entry has been revealed

- Stronger: no single piece of information is revealed (what's the difference from the "weak" version?)
- Strongest: the adversary's beliefs about the data have not changed

Kullback-Leibler Distance

OKER 1997年4月14月1日日本 建汽油用 当时间在1997日4月19月1日4月18月1日日本 建汽油用 当时间在1997年4月1日4月19日4月19日4日

Measures the "difference" between two probability distributions

$$D_{\mathrm{KL}}(P \| Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

Privacy of Input Perturbation

- X is a random variable, R is the randomization operator, Y=R(X) is the perturbed database
- Naïve: measure mutual information between original and randomized databases
 - Average KL distance between (1) distribution of X and (2) distribution of X conditioned on Y=y
 - $E_y(KL(P_{X|Y=y} || P_x))$
 - Intuition: if this distance is small, then Y leaks little information about actual values of X
- Why is this definition problematic?

Input Perturbation Example

Randomization operator has to be public (why?)

Privacy Definitions

- Mutual information can be small on average, but an individual randomized value can still leak a lot of information about the original value
- Better: consider some property Q(x)
 - Adversary has a priori probability P_i that $Q(x_i)$ is true
- Privacy breach if revealing y_i=R(x_i) significantly changes adversary's probability that Q(x_i) is true
 - Intuition: adversary learned something about entry x_i (namely, likelihood of property Q holding for this entry)

Example

- ◆Data: 0≤x≤1000, p(x=0)=0.01, p(x≠0)=0.00099
- Reveal y=R(x)

Three possible randomization operators R

- $R_1(x) = x$ with prob. 20%; uniform with prob. 80%
- R₂(x) = x+ξ mod 1001, ξ uniform in [-100,100]
- $R_3(x) = R_2(x)$ with prob. 50%, uniform with prob. 50%

Which randomization operator is better?

Some Properties

◆ $Q_1(x)$: x=0; $Q_2(x)$: x∉{200, ..., 800}

What are the a priori probabilities for a given x that these properties hold?

• Q₁(x): 1%, Q₂(x): 40.5%

Now suppose adversary learned that y=R(x)=0. What are probabilities of $Q_1(x)$ and $Q_2(x)$?

- If $R = R_1$ then $Q_1(x)$: 71.6%, $Q_2(x)$: 83%
- If $R = R_2$ then $Q_1(x)$: 4.8%, $Q_2(x)$: 100%
- If $R = R_3$ then $Q_1(x)$: 2.9%, $Q_2(x)$: 70.8%

Privacy Breaches

$R_1(x)$ leaks information about property $Q_1(x)$

Before seeing R₁(x), adversary thinks that probability of x=0 is only 1%, but after noticing that R₁(x)=0, the probability that x=0 is 72%

$R_2(x)$ leaks information about property $Q_2(x)$

- Before seeing R₂(x), adversary thinks that probability of $x \notin \{200, ..., 800\}$ is 41%, but after noticing that R₂(x)=0, the probability that $x \notin \{200, ..., 800\}$ is 100%
- Randomization operator should be such that posterior distribution is close to the prior distribution for <u>any</u> property

Privacy Breach: Definitions

[Evfimievski et al.]

•Q(x) is some property, ρ_1 , ρ_2 are probabilities

• ρ_1 ~"very unlikely", ρ_2 ~"very likely"

Straight privacy breach:

 $P(Q(x)) \le \rho_1$, but $P(Q(x) | R(x)=y) \ge \rho_2$

• Q(x) is unlikely a priori, but likely after seeing randomized value of x

Inverse privacy breach:

 $P(Q(x)) \ge \rho_2$, but $P(Q(x) | R(x)=y) \le \rho_1$

• Q(x) is likely a priori, but unlikely after seeing randomized value of x

Transition Probabilities

How to ensure that randomization operator hides every property?

- There are 2^{|X|} properties
- Often randomization operator has to be selected even before distribution P_x is known (why?)

Idea: look at operator's transition probabilities

- How likely is x_i to be mapped to a given y?
- Intuition: if all possible values of x_i are equally likely to be randomized to a given y, then revealing y=R(x_i) will not reveal much about actual value of x_i

Amplification

[Evfimievski et al.]

• Randomization operator is γ -amplifying for y if

A DESCRIPTION OF A DESC

$$\forall x_1, x_2 \in V_x : \frac{p(x_1 \to y)}{p(x_2 \to y)} \le \gamma$$

For given ρ_1 , ρ_2 , no straight or inverse privacy breaches occur if

$$\frac{\rho_2}{\rho_1} \frac{(1 - \rho_1)}{(1 - \rho_2)} > \gamma$$

Amplification: Example

◆ For example, for randomization operator R₃, $p(x \rightarrow y) = \frac{1}{2} (1/201 + 1/1001) \quad \text{if } y \in [x-100, x+100]$ $= 1/2002 \quad \text{otherwise}$

• Fractional difference = $1 + 1001/201 < 6 (= \gamma)$

• Therefore, no straight or inverse privacy breaches will occur with $\rho_1=14\%$, $\rho_2=50\%$

Output Perturbation Redux

Randomize response to each query

Formally...

• Database is n-tuple $D = (d_1, d_2 \dots d_n)$

- Elements are not random; adversary may have a priori beliefs about their distribution or specific values
- ◆For any predicate f: D → {0,1}, $p^{i,f}(n)$ is the probability that $f(d_i)=1$, given the answers to n queries as well as all other entries d_i for $j \neq i$
 - p^{i,f}(0)=a priori belief, p^{i,f}(t)=belief after t answers
 - Why is adversary given all entries except d_i?

 $\diamond \operatorname{conf}(p) = \log p / (1-p)$

• From raw probability to "belief"

Privacy Definition Revisited

 Idea: after each query, adversary's gain in knowledge about any individual database entry should be small

- Gain in knowledge about d_i as the result of (n+1)st query = increase from conf(p^{i,f}(n)) to conf(p^{i,f}(n+1))
- (ε,δ,T)-privacy: for every set of independent a priori beliefs, for every d_i, for every predicate f, with at most T queries

$$\Pr[conf(p_T^{i,f}) - conf(p_0^{i,f}) > \varepsilon] \le \delta$$

|Blum et al.|

Limits of Output Perturbation

Dinur and Nissim established fundamental limits on output perturbation (PODS 2003)
 ... The following is less than a sketch!
 Let n be the size of the database (# of entries)

 If O(n^{1/2}) perturbation applied, adversary can extract entire database after poly(n) queries

 ...but even with O(n^{1/2}) perturbation, it is unlikely that user can learn anything useful from the perturbed answers (too much noise)

The SuLQ Algorithm

[Blum et al.]

The SuLQ primitive

60.000 m/straining (00.000

- Input: query (predicate on DB entries) g: $D \rightarrow [0,1]$
- Output: $\sum g(d_i) + N(0,R)$

– Add normal noise with mean 0 and variance R to response

APRATECT IN A READ TO THE SET OF CONTRACT

- As long as T (the number of queries) is sublinear in the number of database entries, SuLQ is (ε,δ,T)-private for R > 8Tlog²(T/ δ)/ε²
 - Why is sublinearity important?

 Several statistical algorithms can be computed on SuLQ responses

Computing with SuLQ

- k-means clustering
- ID3 classifiers
- Perceptron
- Statistical queries learning
- Singular value decomposition

Note: being able to compute the algorithm on perturbed output is not enough (why?)

k-Means Clustering

- Problem: divide a set of points into k clusters based on mutual proximity
- Computed by iterative update
 - Given current cluster centers μ_1 , ..., μ_n , partition samples {d_i} into k sets S₁, ..., S_n, associating each d_i with the nearest μ_i
 - For $1 \le j \le k$, update $\mu'_j = \sum_{i \in S_i} d_i / |S_j|$
- Repeat until convergence or for a fixed number of iterations

Computing k-Means with SuLQ

- Standard algorithm doesn't work (why?)
- Have to modify the iterative update rule
 - Approximate number of points in each cluster S_j
 <u>S'_i = SuLQ(</u> f(d_i)=1 iff j=arg min_i ||m_i-d_i||)
 - Approximate means of each cluster

 $\underline{\mathbf{m}'_{j}} = \mathbf{SuLQ}(\mathbf{f}(\mathbf{d}_{i}) = \mathbf{d}_{i} \text{ iff } \mathbf{j} = \arg \min_{j} ||\mathbf{m}_{j} - \mathbf{d}_{i}||) / \underline{\mathbf{S}'_{j}}$

Number of points in each cluster should greatly exceed R^{1/2} (why?)

ID3 Classifiers

Work with multi-dimensional data

- Each datapoint has multiple attributes
- Goal: build a decision tree to classify a datapoint with as few decisions (comparisons) as possible
 - Pick attribute A that "best" classifies the data
 - Measure entropy in the data with and without each attribute
 - Make A root node; out edges for all possible values
 - For each out edge, apply ID3 recursively with attribute A and "non-matching" data removed
 - Terminate when no more attributes or all datapoints have the same classification

Computing ID3 with SuLQ

Need to modify entropy measure

- To pick best attribute at each step, need to estimate information gain (i.e., entropy loss) for each attribute
 - Harder to do with SuLQ than with raw original data
- SuLQ guarantees that gain from chosen attribute is within Δ of the gain from the actual "best" attribute.

Need to modify termination conditions

• Must stop if the amount of remaining data is small (cannot guarantee privacy anymore)