
slide 1

Vitaly Shmatikov

CS 380S

Privacy-Preserving Data Mining

slide 2

Reading Assignment

Evfimievski, Gehrke, Srikant. “Limiting Privacy
Breaches in Privacy-Preserving Data Mining”
(PODS 2003).
Blum, Dwork, McSherry, and Nissim. “Practical
Privacy: The SuLQ Framework” (PODS 2005).

slide 3

Input Perturbation

x1
…
xn

Reveal entire database, but randomize entries

Database

x1+ε1
…

xn+εn

Add random noise εi to
each database entry xi

For example, if distribution of noise has
mean 0, user can compute average of xi

User

slide 4

Output Perturbation

Randomize response to each query

(S, f)

Set of rows Function on rows

Σi f(xi)

True response

x1
…
xn

DatabaseUser

Add random noise ε
to the true response

+ ε

slide 5

Concepts of Privacy

Weak: no single database entry has been
revealed
Stronger: no single piece of information is
revealed (what’s the difference from the “weak”
version?)
Strongest: the adversary’s beliefs about the
data have not changed

slide 6

Kullback-Leibler Distance

Measures the “difference” between two
probability distributions

slide 7

Privacy of Input Perturbation

X is a random variable, R is the randomization
operator, Y=R(X) is the perturbed database
Naïve: measure mutual information between
original and randomized databases
• Average KL distance between (1) distribution of X and

(2) distribution of X conditioned on Y=y

• Ey (KL(PX|Y=y || Px))
– Intuition: if this distance is small, then Y leaks little

information about actual values of X

Why is this definition problematic?

slide 8

Input Perturbation Example

Gladys: 85
Doris: 90
Beryl: 82

Name: Age
databaseGladys: 72

Doris: 110
Beryl: 85

Age is an integer
between 0 and 90

Randomize database entries
by adding random integers
between -20 and 20

Randomization operator
has to be public (why?)

Doris’s
age is 90!!

slide 9

Privacy Definitions

Mutual information can be small on average, but
an individual randomized value can still leak a lot
of information about the original value
Better: consider some property Q(x)
• Adversary has a priori probability Pi that Q(xi) is true

Privacy breach if revealing yi=R(xi) significantly
changes adversary’s probability that Q(xi) is true
• Intuition: adversary learned something about entry xi

(namely, likelihood of property Q holding for this entry)

slide 10

Example

Data: 0≤x≤1000, p(x=0)=0.01, p(x≠0)=0.00099
Reveal y=R(x)
Three possible randomization operators R
• R1(x) = x with prob. 20%; uniform with prob. 80%
• R2(x) = x+ξ mod 1001, ξ uniform in [-100,100]
• R3(x) = R2(x) with prob. 50%, uniform with prob. 50%

Which randomization operator is better?

slide 11

Some Properties

Q1(x): x=0; Q2(x): x∉{200, ..., 800}
What are the a priori probabilities for a given x
that these properties hold?
• Q1(x): 1%, Q2(x): 40.5%

Now suppose adversary learned that y=R(x)=0.
What are probabilities of Q1(x) and Q2(x)?
• If R = R1 then Q1(x): 71.6%, Q2(x): 83%
• If R = R2 then Q1(x): 4.8%, Q2(x): 100%
• If R = R3 then Q1(x): 2.9%, Q2(x): 70.8%

slide 12

Privacy Breaches

R1(x) leaks information about property Q1(x)
• Before seeing R1(x), adversary thinks that probability of

x=0 is only 1%, but after noticing that R1(x)=0, the
probability that x=0 is 72%

R2(x) leaks information about property Q2(x)
• Before seeing R2(x), adversary thinks that probability of

x∉{200, ..., 800} is 41%, but after noticing that
R2(x)=0, the probability that x∉{200, ..., 800} is 100%

Randomization operator should be such that
posterior distribution is close to the prior
distribution for any property

slide 13

Privacy Breach: Definitions

Q(x) is some property, ρ1, ρ2 are probabilities
• ρ1∼“very unlikely”, ρ2∼“very likely”

Straight privacy breach:
P(Q(x)) ≤ ρ1, but P(Q(x) | R(x)=y) ≥ ρ2
• Q(x) is unlikely a priori, but likely after seeing

randomized value of x

Inverse privacy breach:
P(Q(x)) ≥ ρ2, but P(Q(x) | R(x)=y) ≤ ρ1
• Q(x) is likely a priori, but unlikely after seeing

randomized value of x

[Evfimievski et al.]

slide 14

Transition Probabilities

How to ensure that randomization operator
hides every property?
• There are 2|X| properties
• Often randomization operator has to be selected even

before distribution Px is known (why?)

Idea: look at operator’s transition probabilities
• How likely is xi to be mapped to a given y?
• Intuition: if all possible values of xi are equally likely

to be randomized to a given y, then revealing y=R(xi)
will not reveal much about actual value of xi

slide 15

Amplification

Randomization operator is γ-amplifying for y if

For given ρ1, ρ2, no straight or inverse privacy
breaches occur if

γ≤
→
→

∈∀
y)p(x
y)p(x :V x ,x

2

1
x21

γ
ρ
ρ

ρ
ρ

) -(1
) -(1

2

1

1

2 >

[Evfimievski et al.]

slide 16

Amplification: Example

For example, for randomization operator R3,
p(x→y) = ½ (1/201 + 1/1001) if y∈[x-100,x+100]

= 1/2002 otherwise

Fractional difference = 1 + 1001/201 < 6 (= γ)
Therefore, no straight or inverse privacy
breaches will occur with ρ1=14%, ρ2=50%

slide 17

Output Perturbation Redux

Randomize response to each query

(S, f)

Set of rows Function on rows

Σi f(xi)

True response

x1
…
xn

DatabaseUser

Add random noise ε
to the true response

+ ε

slide 18

Formally…

Database is n-tuple D = (d1, d2 … dn)
• Elements are not random; adversary may have a

priori beliefs about their distribution or specific values

For any predicate f: D {0,1}, pi,f(n) is the
probability that f(di)=1, given the answers to n
queries as well as all other entries dj for j≠i
• pi,f(0)=a priori belief, pi,f(t)=belief after t answers
• Why is adversary given all entries except di?

conf(p) = log p / (1–p)
• From raw probability to “belief”

slide 19

Privacy Definition Revisited

Idea: after each query, adversary’s gain in
knowledge about any individual database entry
should be small
• Gain in knowledge about di as the result of (n+1)st

query = increase from conf(pi,f(n)) to conf(pi,f(n+1))

(ε,δ,T)-privacy: for every set of independent a
priori beliefs, for every di, for every predicate f,
with at most T queries

δε ≤>−])()(Pr[,
0

, fifi
T pconfpconf

[Blum et al.]

slide 20

Limits of Output Perturbation

Dinur and Nissim established fundamental limits
on output perturbation (PODS 2003)
… The following is less than a sketch!
Let n be the size of the database (# of entries)
If O(n½) perturbation applied, adversary can
extract entire database after poly(n) queries
…but even with O(n½) perturbation, it is unlikely
that user can learn anything useful from the
perturbed answers (too much noise)

slide 21

The SuLQ Algorithm

The SuLQ primitive
• Input: query (predicate on DB entries) g: D [0,1]

• Output: Σ g(di) + N(0,R)
– Add normal noise with mean 0 and variance R to response

As long as T (the number of queries) is sub-
linear in the number of database entries, SuLQ
is (ε,δ,T)-private for R > 8Tlog2(T/ δ)/ε2

• Why is sublinearity important?

Several statistical algorithms can be computed
on SuLQ responses

[Blum et al.]

slide 22

Computing with SuLQ

k-means clustering
ID3 classifiers
Perceptron
Statistical queries learning
Singular value decomposition

Note: being able to compute the algorithm on
perturbed output is not enough (why?)

slide 23

k-Means Clustering

Problem: divide a set of points into k clusters
based on mutual proximity
Computed by iterative update
• Given current cluster centers μ1, …, μn, partition

samples {di} into k sets S1, …, Sn, associating each di
with the nearest μj

• For 1 ≤ j ≤ k, update μ’j=Σi∈Si di / |Sj|

Repeat until convergence or for a fixed number
of iterations

slide 24

Computing k-Means with SuLQ

Standard algorithm doesn’t work (why?)
Have to modify the iterative update rule
• Approximate number of points in each cluster Sj

S’j = SuLQ(f(di)=1 iff j=arg minj ||mj-di||)
• Approximate means of each cluster

m’j = SuLQ(f(di)=di iff j=arg minj ||mj-di||) / S’j
Number of points in each cluster should greatly
exceed R½ (why?)

slide 25

ID3 Classifiers

Work with multi-dimensional data
• Each datapoint has multiple attributes

Goal: build a decision tree to classify a datapoint
with as few decisions (comparisons) as possible
• Pick attribute A that “best” classifies the data

– Measure entropy in the data with and without each attribute

• Make A root node; out edges for all possible values
• For each out edge, apply ID3 recursively with attribute

A and “non-matching” data removed
• Terminate when no more attributes or all datapoints

have the same classification

slide 26

Computing ID3 with SuLQ

Need to modify entropy measure
• To pick best attribute at each step, need to estimate

information gain (i.e., entropy loss) for each attribute
– Harder to do with SuLQ than with raw original data

• SuLQ guarantees that gain from chosen attribute is
within Δ of the gain from the actual “best” attribute.

Need to modify termination conditions
• Must stop if the amount of remaining data is small

(cannot guarantee privacy anymore)

	Privacy-Preserving Data Mining
	Reading Assignment
	Input Perturbation
	Output Perturbation
	Concepts of Privacy
	Kullback-Leibler Distance	
	Privacy of Input Perturbation
	Input Perturbation Example
	Privacy Definitions
	Example
	Some Properties
	Privacy Breaches
	Privacy Breach: Definitions
	Transition Probabilities
	Amplification
	Amplification: Example
	Output Perturbation Redux
	Formally…
	Privacy Definition Revisited
	Limits of Output Perturbation	
	The SuLQ Algorithm
	Computing with SuLQ
	k-Means Clustering
	Computing k-Means with SuLQ
	ID3 Classifiers
	Computing ID3 with SuLQ

