

Differential Privacy

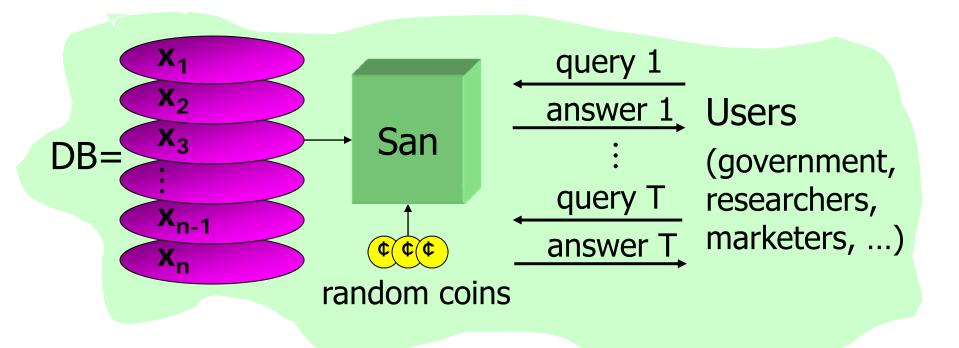
Vitaly Shmatikov

most slides from Adam Smith (Penn State)

Reading Assignment

Dwork. "Differential Privacy" (invited talk at ICALP 2006).

Basic Setting



Examples of Sanitization Methods

Input perturbation

• Add random noise to database, release

Summary statistics

- Means, variances
- Marginal totals
- Regression coefficients
- Output perturbation
 - Summary statistics with noise
- Interactive versions of the above methods
 - Auditor decides which queries are OK, type of noise

Strawman Definition

Assume x₁,...,x_n are drawn i.i.d. from unknown distribution

 Candidate definition: sanitization is safe if it only reveals the distribution

Implied approach:

- Learn the distribution
- Release description of distribution or re-sample points
- This definition is tautological!
 - Estimate of distribution depends on data... why is it safe?

Blending into a Crowd

Frequency in DB or frequency in underlying population?

Intuition: "I am safe in a group of k or more"

• k varies (3... 6... 100... 10,000?)

Many variations on theme

 Adversary wants predicate g such that 0 < #{i | g(x_i)=true} < k

- Privacy is "protection from being brought to the attention of others" [Gavison]
- Rare property helps re-identify someone
- Implicit: information about a large group is public
 - E.g., liver problems more prevalent among diabetics

Clustering-Based Definitions

 Given sanitization S, look at all databases consistent with S

- Safe if no predicate is true for all consistent databases
- k-anonymity
 - Partition D into bins
 - Safe if each bin is either empty, or contains at least k elements
- Cell bound methods
 - Release marginal sums

	brown	blue	Σ
blond	2	10	12
brown	12	6	18
Σ	14	16	

r	brown	blue	Σ
blond	[0,12]	[0,12]	12
brown	[0,14]	[0,16]	18
Σ	14	16	

Issues with Clustering

Purely syntactic definition of privacy

What adversary does this apply to?

- Does not consider adversaries with side information
- Does not consider probability
- Does not consider adversarial algorithm for making decisions (inference)

"Bayesian" Adversaries

Adversary outputs point $z \in D$

- **Score** = $1/f_z$ if $f_z > 0$, 0 otherwise
 - f_z is the number of matching points in D
- •Sanitization is safe if E(score) $\leq \epsilon$

Procedure:

- Assume you know adversary's prior distribution over databases
- Given a candidate output, update prior conditioned on output (via Bayes' rule)
- If max_z E(score | output) < ϵ , then safe to release

Issues with "Bayesian" Privacy

 Restricts the type of predicates adversary can choose

- Must know prior distribution
 - Can one scheme work for many distributions?
 - Sanitizer works harder than adversary
- Conditional probabilities don't consider previous iterations
 - Remember simulatable auditing?

Classical Intution for Privacy

- "If the release of statistics S makes it possible to determine the value [of private information] more accurately than is possible without access to S, a disclosure has taken place." [Dalenius 1977]
 - Privacy means that anything that can be learned about a respondent from the statistical database can be learned without access to the database

Similar to semantic security of encryption

• Anything about the plaintext that can be learned from a ciphertext can be learned without the ciphertext

Problems with Classic Intuition

- Popular interpretation: prior and posterior views about an individual shouldn't change "too much"
 - What if my (incorrect) prior is that every UTCS graduate student has three arms?
- How much is "too much?"
 - Can't achieve cryptographically small levels of disclosure <u>and</u> keep the data useful
 - Adversarial user is <u>supposed</u> to learn unpredictable things about the database

Impossibility Result

◆ <u>Privacy</u>: for some definition of "privacy breach," ∀ distribution on databases, ∀ adversaries A, ∃ A'

such that $Pr(A(San) = breach) - Pr(A'() = breach) \le \varepsilon$

• For reasonable "breach", if San(DB) contains information about DB, then some adversary breaks this definition

Example

- Vitaly knows that Alex Benn is 2 inches taller than the average Russian
- DB allows computing average height of a Russian
- This DB breaks Alex's privacy according to this definition... even if his record is <u>not</u> in the database!

|Dwork|

(Very Informal) Proof Sketch

Suppose DB is uniformly random

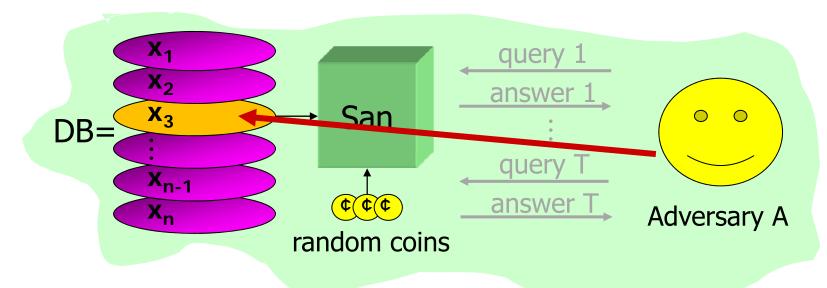
• Entropy I(DB ; San(DB)) > 0

"Breach" is predicting a predicate g(DB)

- ◆Adversary knows r, H(r ; San(DB)) ⊕ g(DB)
 - H is a suitable hash function, r=H(DB)

By itself, does not leak anything about DB (why?)
Together with San(DB), reveals g(DB) (why?)

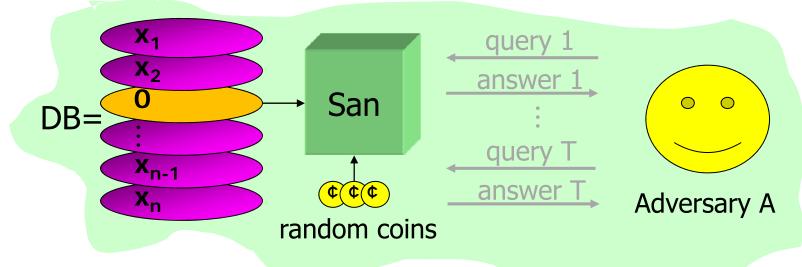
Differential Privacy (1)



Example with Russians and Alex Benn

- Adversary learns Alex's height even if he is not in the database
- Intuition: "Whatever is learned would be learned regardless of whether or not Alex participates"
 - Dual: Whatever is already known, situation won't get worse

Differential Privacy (2)



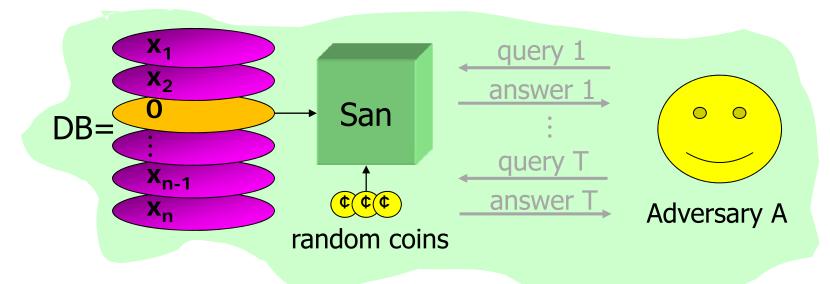
Define n+1 games

- Game 0: Adv. interacts with San(DB)
- Game i: Adv. interacts with $San(DB_{-i})$; $DB_{-i} = (x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$

• Given S and prior p() on DB, define n+1 posterior distrib's

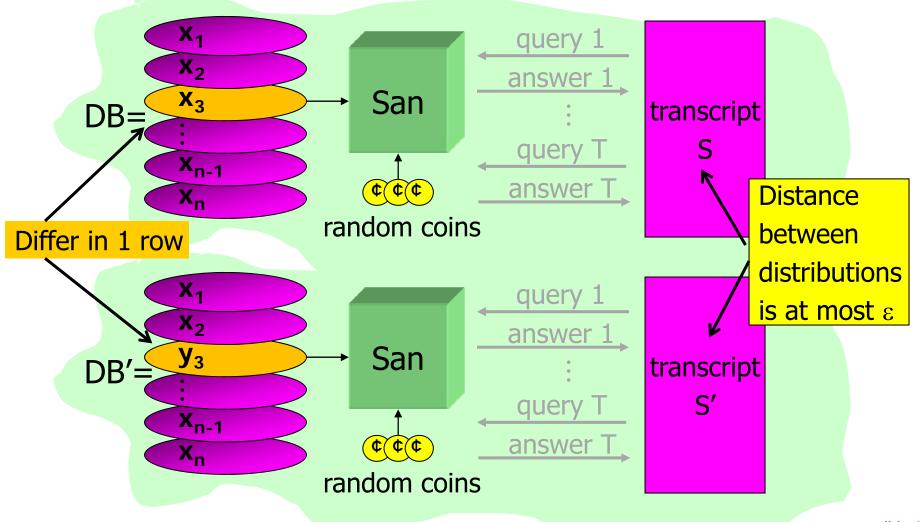
 $p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(San(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$

Differential Privacy (3)



Definition: San is safe if \forall prior distributions p(¢) on DB, \forall transcripts S, \forall i =1,...,n StatDiff(p₀(¢|S) , p_i(¢|S)) $\leq \varepsilon$

Indistinguishability



Which Distance to Use?

• Problem: ε must be large

- Any two databases induce transcripts at distance $\leq n_{\epsilon}$
- To get utility, need $\varepsilon > 1/n$
- Statistical difference 1/n is not meaningful!
- Example: release random point in database
 - San $(x_1,...,x_n) = (j, x_j)$ for random j
- For every i , changing x_i induces statistical difference 1/n

• But some x_i is revealed with probability 1

Formalizing Indistinguishability

Definition: San is ϵ -indistinguishable if

 \forall A, \forall <u>DB</u>, <u>DB</u>' which differ in 1 row, \forall sets of transcripts S

p(San(DB) \in S) \in (1 ± ϵ) p(San(DB') \in S)

Equivalently,
$$\forall$$
 S: $\frac{p(San(DB) = S)}{p(San(DB') = S)} \in 1 \pm \varepsilon$

Indistinguishability \Rightarrow Diff. Privacy

Definition: San is safe if \forall prior distributions p(¢) on DB, \forall transcripts S, \forall i =1,...,n StatDiff(p₀(¢|S) , p_i(¢|S)) $\leq \varepsilon$

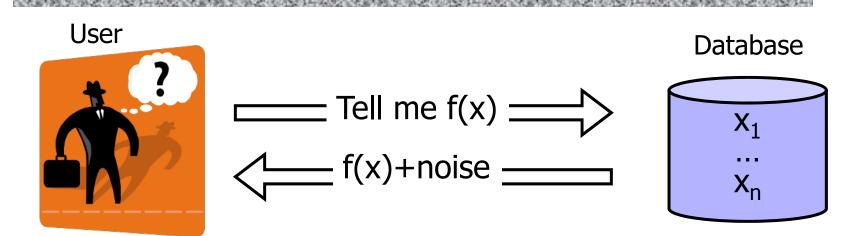
 $p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(San(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$

For every S and DB, indistinguishability implies

 $\frac{p_i(DB|S)}{p_0(DB|S)} = \frac{p(San(DB_{-i}) = S)}{p(San(DB) = S)} \times \frac{p(S \text{ in Game 0})}{p(S \text{ in Game }i)} \approx 1 \pm 2\epsilon$

This implies StatDiff($p_0(\c | S)$, $p_i(\c | S)$) $\leq \varepsilon$

Diff. Privacy in Output Perturbation



 Intuition: f(x) can be released accurately when f is insensitive to individual entries x₁, ... x_n

• Global sensitivity $GS_f = \max_{\text{neighbors } x, x'} ||f(x) - f(x')||_1$

• Example: $GS_{average} = 1/n$ for sets of bits

• Theorem: $f(x) + Lap(GS_f / \varepsilon)$ is ε -indistinguishable constant of f

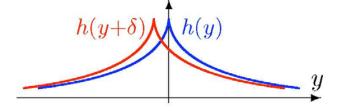
Noise generated from Laplace distribution

Lipschitz

Sensitivity with Laplace Noise

$\frac{\text{Theorem}}{If A(x) = f(x) + \mathsf{Lap}\left(\frac{\mathsf{GS}_f}{\varepsilon}\right) \text{ then } A \text{ is } \varepsilon \text{-indistinguishable.}}$

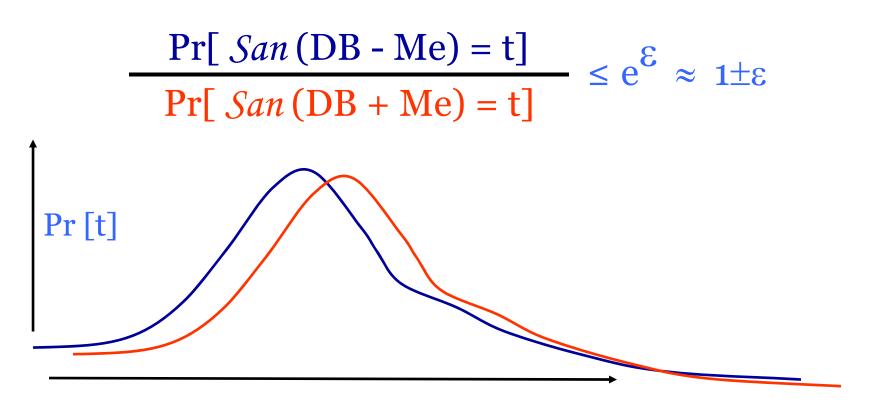
Laplace distribution $Lap(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$



Sliding property of $Lap\left(\frac{GS_f}{\varepsilon}\right)$: $\frac{h(y)}{h(y+\delta)} \le e^{\varepsilon \cdot \frac{\|\delta\|}{GS_f}}$ for all y, δ *Proof idea:* A(x): blue curve A(x'): red curve $\delta = f(x) - f(x') \le GS_f$

Differential Privacy: Summary

San gives ε-differential privacy if for all values of DB and Me and all transcripts t:



Intuition

No perceptible risk is incurred by joining DB
 Anything adversary can do to me, it could do without me (my data)

