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Reading Assignment

Dwork. “Differential Privacy” (invited talk at 
ICALP 2006).
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Examples of Sanitization Methods

Input perturbation
• Add random noise to database, release

Summary statistics
• Means, variances
• Marginal totals 
• Regression coefficients

Output perturbation
• Summary statistics with noise

Interactive versions of the above methods
• Auditor decides which queries are OK, type of noise
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Strawman Definition

Assume x1,…,xn are drawn i.i.d. from unknown 
distribution
Candidate definition: sanitization is safe if it only 
reveals the distribution
Implied approach:
• Learn the distribution
• Release description of distribution or re-sample points

This definition is tautological!
• Estimate of distribution depends on data… why is it 

safe?
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Frequency in DB or frequency 
in underlying population?

Blending into a Crowd

Intuition: “I am safe in a group of k or more”
• k varies (3… 6… 100…  10,000?)

Many variations on theme
• Adversary wants predicate g

such that 0 < #{i | g(xi)=true} < k

Why?
• Privacy is “protection from being brought to the 

attention of others” [Gavison]
• Rare property helps re-identify someone
• Implicit: information about a large group is public

– E.g., liver problems more prevalent among diabetics
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Clustering-Based Definitions

Given sanitization S, look at all databases 
consistent with S
Safe if no predicate is true for 
all consistent databases
k-anonymity
• Partition D into bins
• Safe if each bin is either empty, or

contains at least k elements

Cell bound methods
• Release marginal sums
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brown blue Σ

blond [0,12] [0,12] 12
brown [0,14] [0,16] 18
Σ 14 16
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Issues with Clustering

Purely syntactic definition of privacy
What adversary does this apply to?
• Does not consider adversaries with side information
• Does not consider probability
• Does not consider adversarial algorithm for making 

decisions (inference)
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“Bayesian” Adversaries

Adversary outputs point z ∈ D
Score = 1/fz if fz > 0,  0 otherwise
• fz  is the number of matching points in D

Sanitization is safe if E(score) ≤ ε
Procedure:
• Assume you know adversary’s prior distribution over 

databases
• Given a candidate output, update prior conditioned 

on output (via Bayes’ rule)
• If maxz E( score | output ) < ε, then safe to release 
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Issues with “Bayesian” Privacy

Restricts the type of predicates adversary can 
choose
Must know prior distribution
• Can one scheme work for many distributions?
• Sanitizer works harder than adversary

Conditional probabilities don’t consider previous 
iterations
• Remember simulatable auditing?
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Classical Intution for Privacy

“If the release of statistics S makes it possible to 
determine the value [of private information] more 
accurately than is possible without access to S, a 
disclosure has taken place.”   [Dalenius 1977]

• Privacy means that anything that can be learned about 
a respondent from the statistical database can be 
learned without access to the database

Similar to semantic security of encryption
• Anything about the plaintext that can be learned from 

a ciphertext can be learned without the ciphertext
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Problems with Classic Intuition

Popular interpretation: prior and posterior views 
about an individual shouldn’t change “too much”
• What if my (incorrect) prior is that every UTCS 

graduate student has three arms?

How much is “too much?”
• Can’t achieve cryptographically small levels of 

disclosure and keep the data useful
• Adversarial user is supposed to learn unpredictable 

things about the database
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Impossibility Result

Privacy: for some definition of “privacy breach,” 
∀ distribution on databases, ∀ adversaries A, ∃ A’ 
such that Pr(A(San)=breach) – Pr(A’()=breach) ≤ ε
• For reasonable “breach”, if San(DB) contains information 

about DB, then some adversary breaks this definition

Example
• Vitaly knows that Alex Benn is 2 inches taller than the 

average Russian
• DB allows computing average height of a Russian
• This DB breaks Alex’s privacy according to this 

definition… even if his record is not in the database!
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(Very Informal) Proof Sketch

Suppose DB is uniformly random
• Entropy I( DB ; San(DB) ) > 0

“Breach” is predicting a predicate g(DB)
Adversary knows r, H(r ; San(DB)) ⊕ g(DB)
• H is a suitable hash function, r=H(DB)

By itself, does not leak anything about DB (why?)
Together with San(DB), reveals g(DB) (why?)
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Differential Privacy (1)

xn

xn-1

M

x3

x2

x1

San

query 1
answer 1

query T
answer T

MDB=

random coins
¢ ¢ ¢ 

slide 15

Example with Russians and Alex Benn
• Adversary learns Alex’s height even if he is not in the database

Intuition: “Whatever is learned would be learned regardless 
of whether or not Alex participates”
• Dual: Whatever is already known, situation won’t get worse

Adversary A



Differential Privacy (2)
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Define n+1 games
• Game 0: Adv. interacts with San(DB)

• Game i: Adv. interacts with San(DB-i); DB-i = (x1,…,xi-1,0,xi+1,…,xn)

• Given S and prior p() on DB, define n+1 posterior distrib’s
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Differential Privacy (3)
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Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n

StatDiff( p0(¢|S) , pi(¢|S) ) ≤ ε



Indistinguishability
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Which Distance to Use? 

Problem: ε must be large
• Any two databases induce transcripts at distance ≤ nε
• To get utility, need ε > 1/n

Statistical difference 1/n is not meaningful!
Example: release random point in database
• San(x1,…,xn) =  ( j, xj )  for random j 

For every i , changing xi induces statistical 
difference 1/n
But some xi is revealed with probability 1
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?

Definition: San is ε-indistinguishable if
∀ A,  ∀ DB, DB’ which differ in 1 row, ∀ sets of transcripts S

Adversary A 

query 1

answer 1
transcript

S

query 1

answer 1
transcript

S’

Equivalently, ∀ S: p( San(DB) = S )
p( San(DB’)= S )

∈ 1 ± ε

p( San(DB) ∈ S ) ∈ (1 ± ε) p( San(DB’) ∈ S )

Formalizing Indistinguishability
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Indistinguishability ⇒ Diff. Privacy

Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n

StatDiff( p0(¢|S) , pi(¢|S) ) ≤ ε

For every S and DB, indistinguishability implies 

This implies StatDiff( p0(¢|S) , pi(¢| S) ) ≤ ε
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Diff. Privacy in Output Perturbation

Intuition: f(x) can be released accurately when f is 
insensitive to individual entries x1, … xn

Global sensitivity GSf = maxneighbors x,x’ ||f(x) – f(x’)||1
• Example: GSaverage = 1/n  for sets of bits

Theorem: f(x) + Lap(GSf / ε) is ε-indistinguishable
• Noise generated from Laplace distribution
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Sensitivity with Laplace Noise
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Differential Privacy: Summary

San gives ε-differential privacy if for all values of 
DB and Me and all transcripts t:
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Pr [t]

Pr[ San (DB - Me) = t]

Pr[ San (DB + Me) = t]
≤ eε ≈ 1±ε



Intuition

No perceptible risk is incurred by joining DB
Anything adversary can do to me, it could do 
without me (my data)

Bad Responses: X XX

Pr [response]
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