

Timing Attacks

Vitaly Shmatikov

Reading

Kocher. "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems" (CRYPTO 1996).

Brumley and Boneh. "Remote Timing Attacks Are Practical" (Best Paper Award, USENIX Security 2003).

Attacking Cryptographic Schemes

Cryptanalysis

- Find mathematical weaknesses in constructions
- Statistical analysis of plaintext / ciphertext pairs
- Side channel attacks
 - Exploit characteristics of implementations
 - Power analysis
 - Electromagnetic radiation analysis
 - Acoustic analysis
 - Timing analysis

Timing Attack

 Basic idea: learn the system's secret by observing how long it takes to perform various computations
 Typical goal: extract private key
 Extremely powerful because isolation doesn't help

- Victim could be remote
- Victim could be inside its own virtual machine
- Keys could be in tamper-proof storage or smartcard

Attacker wins simply by measuring response times

RSA Cryptosystem

•Key generation:

- Generate large (say, 512-bit) primes p, q
- Compute n=pq and $\varphi(n)=(p-1)(q-1)$
- Choose small e, relatively prime to $\varphi(n)$
 - Typically, e=3 (may be vulnerable) or $e=2^{16}+1=65537$ (why?)
- Compute unique d such that $ed = 1 \mod \varphi(n)$
- Public key = (e,n); private key = d
 - Security relies on the assumption that it is difficult to compute roots modulo n without knowing p and q

Encryption of m (simplified!): c = m^e mod n

• Decryption of c: $c^d \mod n = (m^e)^d \mod n = m$

How Does RSA Decryption Work?

RSA decryption: compute y^x mod n

• This is a modular exponentiation operation

Naïve algorithm: square and multiply

Let $s_0 = 1$. For k = 0 upto w - 1: If (bit k of x) is 1 then Let $R_k = (s_k \cdot y) \mod n$. Else Let $R_k = s_k$. Let $s_{k+1} = R_k^2 \mod n$. EndFor. Return (R_{w-1}) .

Kocher's Observation

Whether iteration takes a long time Let $s_0 = 1$. depends on the kth bit of secret exponent For k=0 upto w-1: This takes a while If (bit k of x) is 1) then to compute Let $R_k \neq (s_k \cdot y) \mod n$. Else Let $R_k = \{s_k\}$. This is instantaneous Let $s_{k+1} = R_k^2 \mod n$. EndFor. Return (R_{w-1}) .

Outline of Kocher's Attack

Idea: guess some bits of the exponent and predict how long decryption will take

- If guess is correct, will observe correlation; if incorrect, then prediction will look random
 - This is a signal detection problem, where signal is timing variation due to guessed exponent bits
 - The more bits you already know, the stronger the signal, thus easier to detect (error-correction property)
- Start by guessing a few top bits, look at correlations for each guess, pick the most promising candidate and continue

RSA in OpenSSL

OpenSSL is a popular open-source toolkit

- mod_SSL (in Apache = 28% of HTTPS market)
- stunnel (secure TCP/IP servers)
- sNFS (secure NFS)
- Many more applications

Kocher's attack doesn't work against OpenSSL

- Instead of square-and-multiply, OpenSSL uses CRT, sliding windows and two different multiplication algorithms for modular exponentiation
 - CRT = Chinese Remainder Theorem
 - Secret exponent is processed in chunks, not bit-by-bit

Chinese Remainder Theorem

$\blacklozenge n = n_1 n_2 ... n_k$

where $gcd(n_i, n_j) = 1$ when $i \neq j$

The system of congruences

 $x = x_1 \mod n_1 = ... = x_k \mod n_k$

- Has a simultaneous solution x to all congruences
- There exists exactly one solution x between 0 and n-1
- For RSA modulus n=pq, to compute x mod n it's enough to know x mod p and x mod q

RSA Decryption With CRT

- \bullet To decrypt c, need to compute $m = c^d \mod n$
- Use Chinese Remainder Theorem (why?)

 - $d_1 = d \mod (p-1)$ $d_2 = d \mod (q-1)$ $qinv = q^{-1} \mod p$ these are precomputed

 - Compute $m_1 = c^{d_1} \mod p$; $m_2 = c^{d_2} \mod q$
 - Compute $m = m_2 + (qinv^*(m_1 m_2) \mod p)^*q$

Attack this computation in order to learn q. This is enough to learn private key (why?)

Montgomery Reduction

• Decryption requires computing $m_2 = c^{d_2} \mod q$

This is done by repeated multiplication

- Simple: square and multiply (process d₂ 1 bit at a time)
- More clever: sliding windows (process d₂ in 5-bit blocks)

In either case, many multiplications modulo q

Multiplications use Montgomery reduction

- Pick some $R = 2^k$
- To compute x*y mod q, convert x and y into their Montgomery form xR mod q and yR mod q
- Compute (xR * yR) * $R^{-1} = zR \mod q$
 - Multiplication by R⁻¹ can be done very efficiently

Schindler's Observation

At the end of Montgomery reduction, if zR > q, then need to subtract q

Probability of this extra step is proportional to c mod q

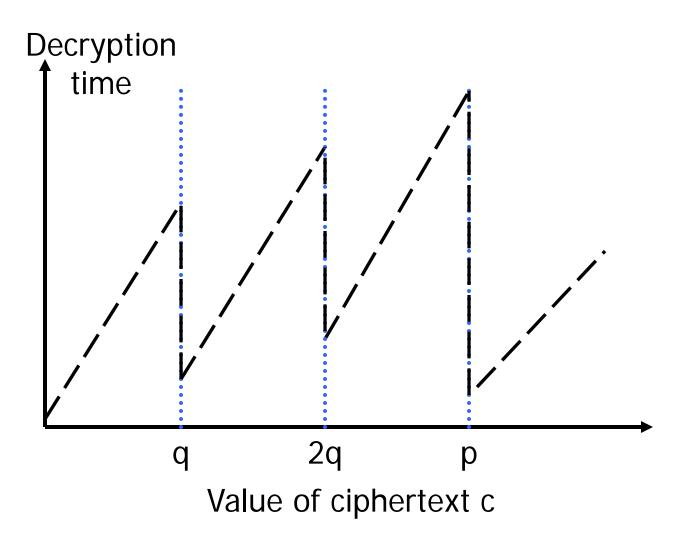
◆ If c is close to q, a lot of subtractions will be done

- If c mod q = 0, very few subtractions
 - Decryption will take longer as c gets closer to q, then become fast as c passes a multiple of q

By playing with different values of c and observing how long decryption takes, attacker can guess q!

• Doesn't work directly against OpenSSL because of sliding windows and two multiplication algorithms

Reduction Timing Dependency

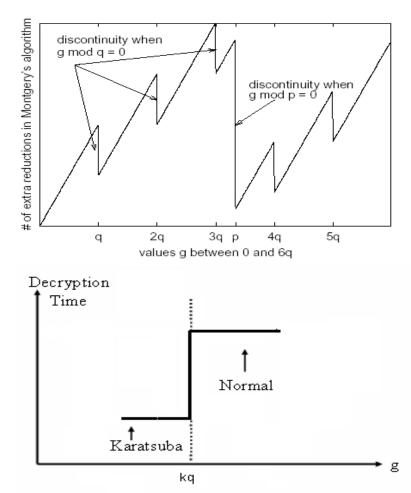


Integer Multiplication Routines

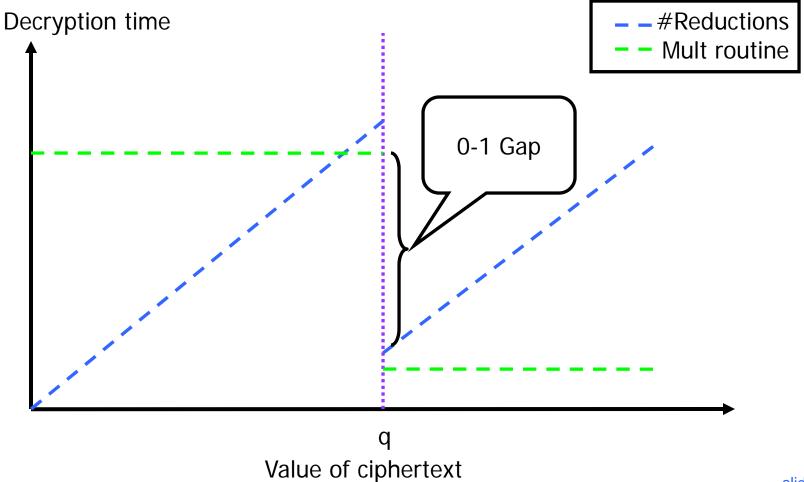
- 30-40% of OpenSSL running time is spent on integer multiplication
- If integers have the same number of words n, OpenSSL uses Karatsuba multiplication
 - Takes O(n^{log₂3})
- If integers have unequal number of words n and m, OpenSSL uses normal multiplication
 - Takes O(nm)

Summary of Time Dependencies

g>q q<q Montgomery Shorter Longer effect Multiplication Shorter Longer effect g is the decryption value (same as c) Different effects... but one will always dominate!



Attack Is Binary Search

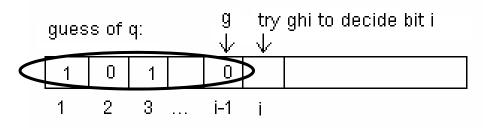


Attack Overview

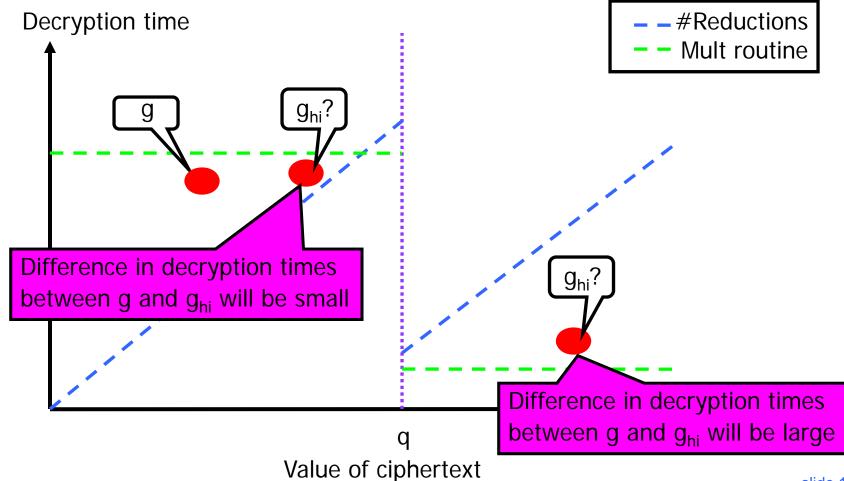
Initial guess g for q between 2⁵¹¹ and 2⁵¹² (why?)
Try all possible guesses for the top few bits
Suppose we know i-1 top bits of q. Goal: ith bit

- Set g =...known i-1 bits of q...000000
- Set g_{hi} =...known i-1 bits of q...100000 (note: g<g_{hi})
 - If $g < q < g_{hi}$ then the ith bit of q is 0
 - If $g < g_{hi} < q$ then the ith bit of q is 1

• Goal: decide whether $g < q < g_{hi}$ or $g < g_{hi} < q$



Two Possibilities for g_{hi}

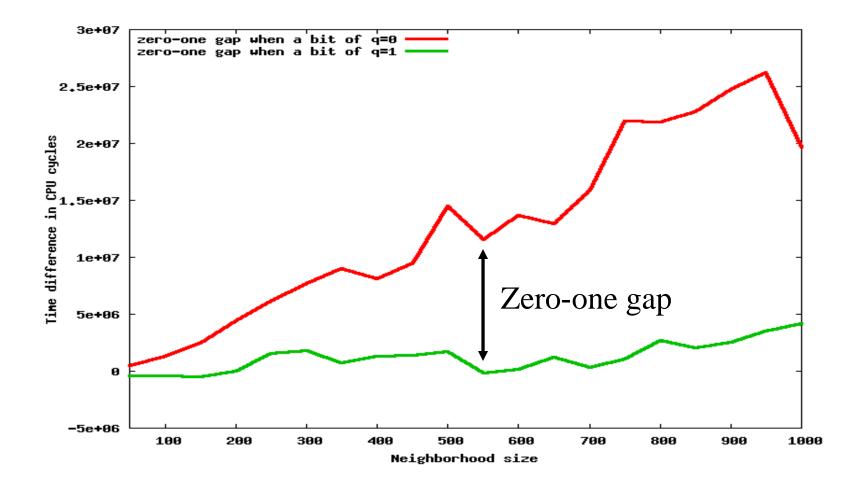


Timing Attack Details

What is "large" and "small"?

- Know from attacking previous bits
- Decrypting just g does not work because of sliding windows
 - Decrypt a neighborhood of values near g
 - Will increase difference between large and small values, resulting in larger 0-1 gap
- Attack requires only 2 hours, about 1.4 million queries to recover the private key
 - Only need to recover most significant half bits of q

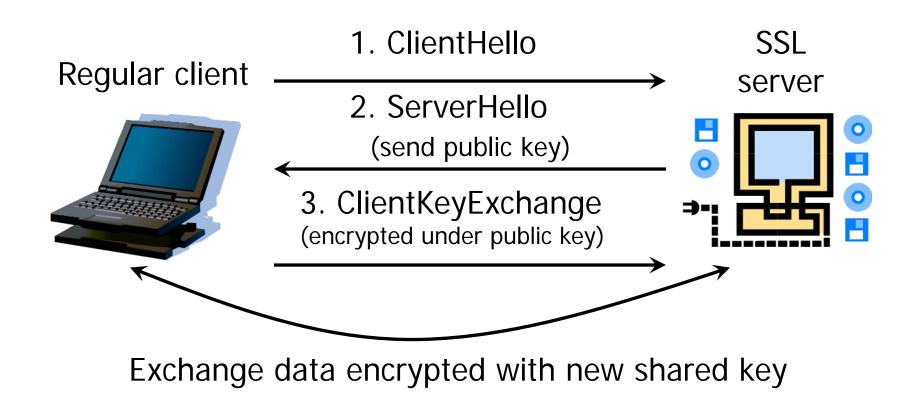
The 0-1 Gap



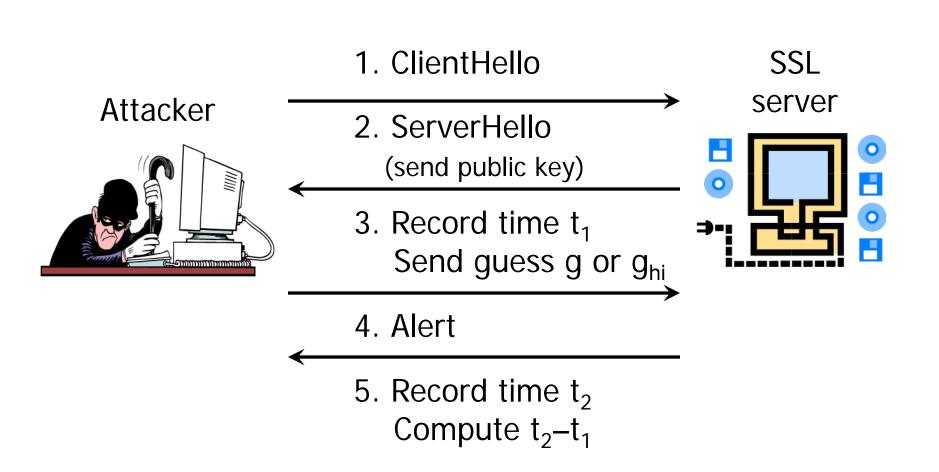
Extracting RSA Private Key



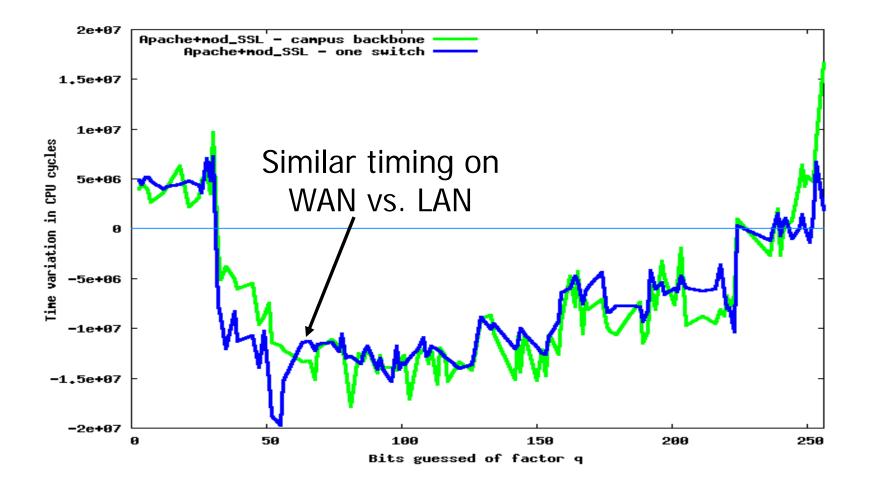
Normal SSL Handshake



Attacking SSL Handshake



Works On The Network



Defenses

Good: Use RSA blinding

Worse: require statically that all decryptions take the same time

- For example, always do the extra "dummy" reduction
- ... but what if compiler optimizes it away?
- Worse: dynamically make all decryptions the same or multiples of the same time "quantum"
 - Now all decryptions have to be as slow as the slowest decryption

RSA Blinding

- Instead of decrypting ciphertext c, decrypt a random ciphertext related to c
 - Compute x' = c*r^e mod n, r is random
 - Decrypt x' to obtain m'
 - Calculate original plaintext m = m'/r mod n
- Since r is random, decryption time is random
- 2-10% performance penalty

Blinding Works

